On the paper “Markov random fields and stochastic partial differential equations”
Sbornik. Mathematics, Tome 35 (1979) no. 1, pp. 157-164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider some properties of generalized solutions of linear stochastic partial differential equations. Bibliography: 5 titles.
@article{SM_1979_35_1_a9,
     author = {Yu. A. Rozanov},
     title = {On the paper {{\textquotedblleft}Markov} random fields and stochastic partial differential equations{\textquotedblright}},
     journal = {Sbornik. Mathematics},
     pages = {157--164},
     year = {1979},
     volume = {35},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1979_35_1_a9/}
}
TY  - JOUR
AU  - Yu. A. Rozanov
TI  - On the paper “Markov random fields and stochastic partial differential equations”
JO  - Sbornik. Mathematics
PY  - 1979
SP  - 157
EP  - 164
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1979_35_1_a9/
LA  - en
ID  - SM_1979_35_1_a9
ER  - 
%0 Journal Article
%A Yu. A. Rozanov
%T On the paper “Markov random fields and stochastic partial differential equations”
%J Sbornik. Mathematics
%D 1979
%P 157-164
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1979_35_1_a9/
%G en
%F SM_1979_35_1_a9
Yu. A. Rozanov. On the paper “Markov random fields and stochastic partial differential equations”. Sbornik. Mathematics, Tome 35 (1979) no. 1, pp. 157-164. http://geodesic.mathdoc.fr/item/SM_1979_35_1_a9/

[1] Yu. A. Rozanov, “Markovskie sluchainye polya i stokhasticheskie uravneniya s chastnymi proizvodnymi”, Matem. sb., 103(145) (1977), 590–613 | MR | Zbl

[2] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, izd-vo LGU, Leningrad, 1950

[3] N. D. McKean, “Brownian motion with a several dimensional time”, Teoriya veroyatn., 8:4 (1963), 357–378 | MR | Zbl

[4] G. M. Molchan, “O nekotorykh zadachakh dlya brounovskogo dvizheniya v smysle Levi”, Teoriya veroyatn., 12:3 (1967), 682–690 | Zbl

[5] L. D. Pitt, “A Markov property for Gaussian processes with a multidimensional parameter”, Arch. Rat. Mech. Anal., 43 (1971), 367–391 | DOI | MR | Zbl