The Fourier series method for entire and meromorphic functions of completely regular growth
Sbornik. Mathematics, Tome 35 (1979) no. 1, pp. 63-84 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By using the Fourier series method, we generalize the Levin–Pfluger theory of entire functions of completely regular growth in two directions: a) We introduce classes of meromorphic functions of completely regular growth; b) the growth of a function is measured with respect to an arbitrary nondecreasing continuous function $\lambda(r)$ that satisfies $\lambda(2r)/\lambda(r)=O(1)$ as $r\to\infty$. Bibliography: 20 titles.
@article{SM_1979_35_1_a5,
     author = {A. A. Kondratyuk},
     title = {The {Fourier} series method for entire and meromorphic functions of completely regular growth},
     journal = {Sbornik. Mathematics},
     pages = {63--84},
     year = {1979},
     volume = {35},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1979_35_1_a5/}
}
TY  - JOUR
AU  - A. A. Kondratyuk
TI  - The Fourier series method for entire and meromorphic functions of completely regular growth
JO  - Sbornik. Mathematics
PY  - 1979
SP  - 63
EP  - 84
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1979_35_1_a5/
LA  - en
ID  - SM_1979_35_1_a5
ER  - 
%0 Journal Article
%A A. A. Kondratyuk
%T The Fourier series method for entire and meromorphic functions of completely regular growth
%J Sbornik. Mathematics
%D 1979
%P 63-84
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1979_35_1_a5/
%G en
%F SM_1979_35_1_a5
A. A. Kondratyuk. The Fourier series method for entire and meromorphic functions of completely regular growth. Sbornik. Mathematics, Tome 35 (1979) no. 1, pp. 63-84. http://geodesic.mathdoc.fr/item/SM_1979_35_1_a5/

[1] L. A. Rubel, B. A. Taylor, “A Fourier series method for meromorfic and entire functions”, Bull. Soc. Math. France, 96 (1968), 53–96 | Zbl

[2] L. A. Rubel, “A generalized canonical product”, Sovremennye problemy teorii analiticheskikh funktsii, izd-vo “Nauka”, Moskva, 1966, 264–270 | MR

[3] L. A. Rubel, “Croiassance et zéros des fonctions meromorphes. Espace duals de fonctions entières”, Publ. Seminaire Math. d'Orsay, 1965–1966

[4] L. A. Rubel, “A survey of a Fourier series method for meromorphic functions”, Lecture Notes in Math., 336, Springer-Verlag, 1973, 51–62 | MR

[5] J. B. Miles, “Quotient representations of meromorphic functions”, J. d'Analyse Math., XXV (1972), 371–388 | DOI | MR

[6] P. Noverraz, “Extensions d'une methode de series de Fourier aux fonctions sousharmoniques et plurisousharmoniques”, Seminaire P. Lelong (6-ème anné, 1965-1966, Exposé n. 3)

[7] R. O. Kujala, “Functions of finite $\lambda$-type in several complex variables”, Trans. Amer. Math. Soc., 161 (1971), 327–358 | DOI | MR | Zbl

[8] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, Moskva, 1956

[9] V. S. Azarin, “O regulyarnosti rosta koeffitsientov Fure logarifma modulya tseloi funktsii”, Teoriya funktsii, funkts. analiz i ikh prilozh., no. 27, 1977 | MR

[10] V. S. Azarin, “Ob indekatorakh tseloi funktsii i regulyarnosti rosta koeffitsientov Fure logarifma i ee modulya”, Funkts. analiz, 9:1 (1975), 47–48 | MR | Zbl

[11] A. A. Kondratyuk, “Tselye funktsii s konechnoi maksimalnoi plotnostyu nulei. I”, Teoriya funktsii, funkts. analiz i ikh prilozh., 10, 1970, 57–70

[12] A. Zigmund, Trigonometricheskie ryady, t. 1, izd-vo “Mir”, Moskva, 1965 | MR

[13] A. Zigmund, Trigonometricheskie ryady, t. 2, izd-vo “Mir”, Moskva, 1965 | MR

[14] A. A. Goldberg, I. V. Ostrovskii, Raspredelenie znachenii meromorfnykh funktsii, izd-vo “Nauka”, Moskva, 1970 | MR

[15] N. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Gostekhizdat, Moskva, 1957

[16] J. B. Miles, D. F. Shea, “An extremal problem in value-distribution theory”, Quart. J. Math., 24:95 (1973), 377–383 | DOI | MR | Zbl

[17] J. B. Miles, D. F. Shea, “On the growth of meromorphic functions having at least one deficient value”, Duke Math. J., 43:1 (1976), 171–186 | DOI | MR | Zbl

[18] U. K. Kheiman, Meromorfnye funktsii, izd-vo “Mir”, Moskva, 1966 | MR

[19] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, izd-vo “Nauka”, Moskva, 1968 | MR

[20] A. F. Leontev, Ryady eksponent, izd-vo “Nauka”, Moskva, 1976 | MR