Polyhedra of algebraic varieties and dominant morphisms
Sbornik. Mathematics, Tome 35 (1979) no. 1, pp. 35-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that a proper surjective morphism of algebraic varieties gives rise to an epimorphism of the rational homology of the peripheral polyhedra associated to these varieties. We introduce a numerical invariant of noncomplete algebraic varieties and prove that it is monotone with respect to dominant morphisms. Our results are applied to the cancellation problem of algebraic varieties. Bibliography: 8 titles.
@article{SM_1979_35_1_a2,
     author = {V. I. Danilov},
     title = {Polyhedra of algebraic varieties and dominant morphisms},
     journal = {Sbornik. Mathematics},
     pages = {35--48},
     year = {1979},
     volume = {35},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1979_35_1_a2/}
}
TY  - JOUR
AU  - V. I. Danilov
TI  - Polyhedra of algebraic varieties and dominant morphisms
JO  - Sbornik. Mathematics
PY  - 1979
SP  - 35
EP  - 48
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1979_35_1_a2/
LA  - en
ID  - SM_1979_35_1_a2
ER  - 
%0 Journal Article
%A V. I. Danilov
%T Polyhedra of algebraic varieties and dominant morphisms
%J Sbornik. Mathematics
%D 1979
%P 35-48
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1979_35_1_a2/
%G en
%F SM_1979_35_1_a2
V. I. Danilov. Polyhedra of algebraic varieties and dominant morphisms. Sbornik. Mathematics, Tome 35 (1979) no. 1, pp. 35-48. http://geodesic.mathdoc.fr/item/SM_1979_35_1_a2/

[1] V. I. Danilov, “Poliedry skhem i algebraicheskikh mnogoobrazii”, Matem. sb., 97(139) (1975), 146–158 | MR | Zbl

[2] X. Khironaka, “Razreshenie osobennostei algebraicheskikh mnogoobrazii nad polyami kharakteristiki nul”, Matematika, 9:6 (1965), 2–70

[3] A. Grothendieck, J. P. Murre, “The tame fundamental group”, Lecture Notes in Math., no. 208, Springer-Verlag, 1971 | MR

[4] P. Deligne, “La conjecture de Weil. I”, Publ. Math. IHES, 1974, no. 43 | MR

[5] P. Godeman, Algebraicheskaya topologiya i teoriya puchkov, IL, Moskva, 1961

[6] P. Delin, “Teoriya Khodzha. II”, Matematika, 17:5 (1973), 3–57 | MR

[7] S. Iitaka, T. Fujita, “Cancellation Theorem for Algebraic Varieties”, J. Fac. Sci. Univ. Tokyo, Sec. 1A, 24:1 (1977), 123–127 | MR | Zbl

[8] S. Iitaka, “On logarithmic Kodaire dimension of algebraic varieties”, Complex Analysis and Algebraic Geometry, Iwanami, Tokyo, 1977, 11–25 | MR