Triangular set functions and Nikodým's theorem on the uniform boundedness of a family of measures
Sbornik. Mathematics, Tome 35 (1979) no. 1, pp. 19-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work triangular set functions are considered. Nikodým's theorem on the uniform boundedness of families of measures is generalized and simultaneously sharpened in a nontrivial way to these functions. As simple corollaries several generalizations of Nikodým's theorem are derived, which were obtained for additive vector-valued functions by Mikusiński, Drewnowski and others; the structural character of uniformly bounded families of triangular set functions is revealed. Bibliography: 10 titles.
@article{SM_1979_35_1_a1,
     author = {N. S. Gusel'nikov},
     title = {Triangular set functions and {Nikod\'ym's} theorem on the uniform boundedness of a~family of measures},
     journal = {Sbornik. Mathematics},
     pages = {19--33},
     year = {1979},
     volume = {35},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1979_35_1_a1/}
}
TY  - JOUR
AU  - N. S. Gusel'nikov
TI  - Triangular set functions and Nikodým's theorem on the uniform boundedness of a family of measures
JO  - Sbornik. Mathematics
PY  - 1979
SP  - 19
EP  - 33
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1979_35_1_a1/
LA  - en
ID  - SM_1979_35_1_a1
ER  - 
%0 Journal Article
%A N. S. Gusel'nikov
%T Triangular set functions and Nikodým's theorem on the uniform boundedness of a family of measures
%J Sbornik. Mathematics
%D 1979
%P 19-33
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1979_35_1_a1/
%G en
%F SM_1979_35_1_a1
N. S. Gusel'nikov. Triangular set functions and Nikodým's theorem on the uniform boundedness of a family of measures. Sbornik. Mathematics, Tome 35 (1979) no. 1, pp. 19-33. http://geodesic.mathdoc.fr/item/SM_1979_35_1_a1/

[1] N. Danford, Dzh. Shvarts, Lineinye operatory, t. 1, IL, Moskva, 1962

[2] J. Mikusinki, “On a theorem on bounded measures”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys., 19 (1971), 441–444 | MR

[3] L. Drewnowski, “Uniform boundedness principle for finitely additive vector measures”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys., 21 (1973), 115–118 | MR | Zbl

[4] G. Ya. Areshkin, V. N. Aleksyuk, V. M. Klimkin, “O nekotorykh svoistvakh vektorno-znachnykh mer”, Uchenye zapiski LGPI im. A. I. Gertsena, 404 (1971), 298–321 | MR

[5] N. S. Guselnikov, “O teoremakh Bruksa–Dzhevetta i Nikodima”, Sb. “Teoriya funktsii i funktsionalnyi analiz”, 45–54 (1975), LGPI im. A. I. Gertsena, Leningrad | MR

[6] A. D. Aleksandrov, “Additivnye funktsii mnozhestva v abstraktnykh prostranstvakh”, Matem. sb., 8(50) (1940), 307–348 | Zbl

[7] C. E. Rickart, “Decomposition of additive set function”, Duke Math. J., 10 (1943), 653–665 | DOI | MR | Zbl

[8] H. S. Guselnikov, “O prodolzhenii kvazilipshitsevykh funktsii mnozhestva”, Matem. zametki, 17:1 (1975), 21–31 | MR

[9] G. Ya. Areshkin, N. S. Guselnikov, “O nekotorykh svoistvakh semeistva $N$-treugolnykh funktsii mnozhestva”, Matematicheskii analiz i teoriya funktsii, 1, MOPI im. N. K. Krupskoi, Moskva, 1973, 211–219

[10] G. Ya. Areshkin, N. S. Guselnikov, “O slaboi ravnostepennoi plotnosti i kompaktnosti semeistv kvazilipshitsevykh funktsii mnozhestva”, Funkts. analiz, 9, no. 5, 1975, 3–13