On the analytic properties of standard zeta functions of siegel modular forms
Sbornik. Mathematics, Tome 35 (1979) no. 1, pp. 1-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that standard zeta functions (analogs of the zeta functions of Rankin and Shimura) for holomorphic cusp forms with respect to congruence subgroups of the form $$ \Gamma_0^n(q)=\biggl\{\begin{pmatrix}A&B\\C&D\end{pmatrix}\in Sp_n(\mathbf Z);\quad C\equiv0\pmod q\biggr\} $$ of the Siegel modular group $Sp_n(\mathbf Z)$ of arbitrary even degree $n$ have a meromorphic continuation. For the case $q=1$, with some additional restrictions, it is proved that the zeta functions are holomorphic except for a finite number of poles, and a functional equation is obtained. Bibliography: 9 titles.
@article{SM_1979_35_1_a0,
     author = {A. N. Andrianov and V. L. Kalinin},
     title = {On the analytic properties of standard zeta functions of siegel modular forms},
     journal = {Sbornik. Mathematics},
     pages = {1--17},
     year = {1979},
     volume = {35},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1979_35_1_a0/}
}
TY  - JOUR
AU  - A. N. Andrianov
AU  - V. L. Kalinin
TI  - On the analytic properties of standard zeta functions of siegel modular forms
JO  - Sbornik. Mathematics
PY  - 1979
SP  - 1
EP  - 17
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1979_35_1_a0/
LA  - en
ID  - SM_1979_35_1_a0
ER  - 
%0 Journal Article
%A A. N. Andrianov
%A V. L. Kalinin
%T On the analytic properties of standard zeta functions of siegel modular forms
%J Sbornik. Mathematics
%D 1979
%P 1-17
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1979_35_1_a0/
%G en
%F SM_1979_35_1_a0
A. N. Andrianov; V. L. Kalinin. On the analytic properties of standard zeta functions of siegel modular forms. Sbornik. Mathematics, Tome 35 (1979) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/SM_1979_35_1_a0/

[1] A. N. Andrianov, “Eilerovy razlozheniya teta-preobrazovanii zigelevykh modulyarnykh form roda $n$”, Matem. cb., 105(147) (1978), 291–342 | MR

[2] A. N. Andrianov, “Simmetricheskie kvadraty dzeta-funktsii zigelevykh modulyarnykh form roda 2”, Trudy Matem. in-ta im. V. A. Steklova, CXLII, 1976, 22–45 | MR | Zbl

[3] A. N. Andrianov, “Eilerovy proizvedeniya, otvechayuschie modulyarnym formam Zigelya roda 2”, Uspekhi matem. nauk, XXIX:3(177) (1974), 43–110 | MR

[4] V. L. Kalinin, “Ryady Eizenshteina na simplekticheskoi gruppe”, Matem. sb., 103(145) (1977), 519–549 | MR | Zbl

[5] R. P. Lenglends, “Eilerovy proizvedeniya”, Matematika, 15:1 (1971), 14–43 | MR | Zbl

[6] Kharish-Chandra, Avtomorfnye formy na poluprostykh gruppakh Li, izd-vo “Mir”, Moskva, 1971 | MR

[7] E. Freitag, “Holomorphe Differentialformen zu Kongruenzgruppen der Siegelschen Modulgruppe zweiten Grades”, Inv. Math., 30 (1975), 181–196 | DOI | MR | Zbl

[8] H. Maass, “Siegel's Modular Forms and Dirichlet Series”, Lecture Notes in Math., 216, Springer-Verlag, Berlin–Heidelberg–New York, 1971 | MR | Zbl

[9] H. L. Resnikoff, “Automorphic forms of singular weight are singular forms”, Math. Ann., 215 (1975), 173–193 | DOI | MR | Zbl