On an algebra of pseudodifferential operators in spaces with weighted norms
Sbornik. Mathematics, Tome 34 (1978) no. 6, pp. 841-865
Cet article a éte moissonné depuis la source Math-Net.Ru
Pseudodifferential operators on Euclidean space $\mathbf R^n$ are studied. These operators, whose definition must be modified in a natural way, act in Hilbert spaces with weighted norms. Using the Mellin transform, a pseudodifferential operator on the sphere $S^{n-1}$ (actually a meromorphic function of a complex parameter $\lambda$) is assigned to an operator on $\mathbf R^n$. This permits one to reduce the study of an algebra of operators on $\mathbf R^n$ to the investigation of an algebra of meromorphic operator-valued functions on $S^{n-1}$. This paper consists of four sections. In § 1 preliminaries are presented. The second section is devoted to the study of an algebra of meromorphic operator-valued functions on the sphere $S^{n-1}$. In § 3 an algebra of pseudodifferential operators on $\mathbf R^n$ is considered. The last section contains rules for change of variables in operators on the sphere and on $\mathbf R^n$. Bibliography: 5 titles.
@article{SM_1978_34_6_a7,
author = {B. A. Plamenevskii},
title = {On an algebra of pseudodifferential operators in spaces with weighted norms},
journal = {Sbornik. Mathematics},
pages = {841--865},
year = {1978},
volume = {34},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1978_34_6_a7/}
}
B. A. Plamenevskii. On an algebra of pseudodifferential operators in spaces with weighted norms. Sbornik. Mathematics, Tome 34 (1978) no. 6, pp. 841-865. http://geodesic.mathdoc.fr/item/SM_1978_34_6_a7/
[1] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, Moskva, 1962
[2] B. A. Plamenevskii, “Ob ogranichennosti singulyarnykh integralov v prostranstvakh s vesom”, Matem. sb., 76(118) (1968), 573–592 | MR
[3] B. A. Plamenevskii, M. E. Yudovin, “Pervaya kraevaya zadacha dlya operatora svertki v konuse”, Matem. sb., 77(119) (1968), 222–250 | MR
[4] L. Khermander, “Psevdodifferentsialnye operatory”, Psevdodifferentsialnye operatory, izd-vo “Mir”, Moskva, 1967 | MR
[5] A. I. Komech, “Ellipticheskie kraevye zadachi dlya psevdodifferentsialnykh operatorov na mnogoobraziyakh s konicheskimi tochkami”, Matem. sb., 86(128) (1971), 268–298 | Zbl