On passing to the limit in degenerate Bellman equations. I
Sbornik. Mathematics, Tome 34 (1978) no. 6, pp. 765-783 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the author proves theorems on passage to the limit in nonlinear parabolic equations of the form $Fu=0$, arising in the theory of optimal control of random processes of diffusion type. Under the assumptions that i) the functions $u_n$ and $u$ have bounded Sobolev derivatives in $t$, ii) the $u_n$ and $u$ are convex downwards in $x$, iii) the $u_n$ are uniformly bounded in some domain $Q$, iv) $u_n\to u$ a.e. in $Q$, v) the coefficients of linear combinations of $F$ satisfy certain smoothness conditions, it is proved that $Fu_n=0$ on $Q$ for all $n$ implies $Fu=0$ on $Q$. The second derivatives of the $u_n$ and $u$ with respect to $x$ are understood in the generalized sense (as measures), and the equations $Fu_n=0$ and $Fu=0$ are considered in the lattice of measures. Bibliography: 10 titles.
@article{SM_1978_34_6_a4,
     author = {N. V. Krylov},
     title = {On passing to the limit in degenerate {Bellman} {equations.~I}},
     journal = {Sbornik. Mathematics},
     pages = {765--783},
     year = {1978},
     volume = {34},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_6_a4/}
}
TY  - JOUR
AU  - N. V. Krylov
TI  - On passing to the limit in degenerate Bellman equations. I
JO  - Sbornik. Mathematics
PY  - 1978
SP  - 765
EP  - 783
VL  - 34
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_1978_34_6_a4/
LA  - en
ID  - SM_1978_34_6_a4
ER  - 
%0 Journal Article
%A N. V. Krylov
%T On passing to the limit in degenerate Bellman equations. I
%J Sbornik. Mathematics
%D 1978
%P 765-783
%V 34
%N 6
%U http://geodesic.mathdoc.fr/item/SM_1978_34_6_a4/
%G en
%F SM_1978_34_6_a4
N. V. Krylov. On passing to the limit in degenerate Bellman equations. I. Sbornik. Mathematics, Tome 34 (1978) no. 6, pp. 765-783. http://geodesic.mathdoc.fr/item/SM_1978_34_6_a4/

[1] N. V. Krylov, Upravlyaemye protsessy diffuzionnogo tipa, izd-vo “Nauka”, Moskva, 1977 | MR

[2] S. N. Kruzhkov, “Obobschennye resheniya uravnenii Gamiltona–Yakobi tipa eikonala. I”, Matem. sb., 98(140) (1975), 450–493 | Zbl

[3] A. I. Volpert, S. I. Khudyaev, “O zadache Koshi dlya kvazilineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii vtorogo poryadka”, Matem. sb., 78(120) (1969), 374–396 | MR

[4] N. V. Krylov, “Ob uravneniyakh minimaksnogo tipa v teorii ellipticheskikh i parabolicheskikh uravnenii na ploskosti”, Matem. sb., 81(123) (1970), 3–22 | MR | Zbl

[5] N. Danford, Dzh. T. Shvarts, Lineinye operatory, obschaya teoriya, IL, Moskva, 1962

[6] V. I. Smirnov, Kurs vysshei matematiki, t. 5, Fizmatgiz, Moskva, 1959 | MR

[7] N.,V. Krylov, “Nekotorye svoistva normalnogo izobrazheniya vypuklykh funktsii”, Matem. sb., 105(147) (1978), 180–191 | MR | Zbl

[8] S. N. Kruzhkov, Nelineinye uravneniya s chastnymi proizvodnymi (lektsii), ch. 2, Moskva, 1970, Uravneniya pervogo poryadka, rotaprint MGU

[9] M. M. Vainberg, Variatsionnyi metod i metod monotonnykh operatorov, izd-vo “Nauka”, Moskva, 1972 | MR

[10] Zh.-L. Lione, Nekotorye metody resheniya nelineinykh kraevykh zadach, izd-vo “Mir”, Moskva, 1972 | MR