On passing to the limit in degenerate Bellman equations.~I
Sbornik. Mathematics, Tome 34 (1978) no. 6, pp. 765-783

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the author proves theorems on passage to the limit in nonlinear parabolic equations of the form $Fu=0$, arising in the theory of optimal control of random processes of diffusion type. Under the assumptions that i) the functions $u_n$ and $u$ have bounded Sobolev derivatives in $t$, ii) the $u_n$ and $u$ are convex downwards in $x$, iii) the $u_n$ are uniformly bounded in some domain $Q$, iv) $u_n\to u$ a.e. in $Q$, v) the coefficients of linear combinations of $F$ satisfy certain smoothness conditions, it is proved that $Fu_n=0$ on $Q$ for all $n$ implies $Fu=0$ on $Q$. The second derivatives of the $u_n$ and $u$ with respect to $x$ are understood in the generalized sense (as measures), and the equations $Fu_n=0$ and $Fu=0$ are considered in the lattice of measures. Bibliography: 10 titles.
@article{SM_1978_34_6_a4,
     author = {N. V. Krylov},
     title = {On passing to the limit in degenerate {Bellman} {equations.~I}},
     journal = {Sbornik. Mathematics},
     pages = {765--783},
     publisher = {mathdoc},
     volume = {34},
     number = {6},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_6_a4/}
}
TY  - JOUR
AU  - N. V. Krylov
TI  - On passing to the limit in degenerate Bellman equations.~I
JO  - Sbornik. Mathematics
PY  - 1978
SP  - 765
EP  - 783
VL  - 34
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1978_34_6_a4/
LA  - en
ID  - SM_1978_34_6_a4
ER  - 
%0 Journal Article
%A N. V. Krylov
%T On passing to the limit in degenerate Bellman equations.~I
%J Sbornik. Mathematics
%D 1978
%P 765-783
%V 34
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1978_34_6_a4/
%G en
%F SM_1978_34_6_a4
N. V. Krylov. On passing to the limit in degenerate Bellman equations.~I. Sbornik. Mathematics, Tome 34 (1978) no. 6, pp. 765-783. http://geodesic.mathdoc.fr/item/SM_1978_34_6_a4/