On the quantization of rapidly oscillating symbols
Sbornik. Mathematics, Tome 34 (1978) no. 6, pp. 737-764 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The authors construct a calculus of functions of coordinate and differentiation operators, ordered in an arbitrary manner. The transition from one order to another is studied, and it is shown that linear combinations of functions of this form with exponential oscillating symbols yield global asymptotic solutions of pseudodifferential equations with smooth bicharacteristics. Formulas are obtained for the composition of two operators with oscillating symbols. Bibliography: 22 titles.
@article{SM_1978_34_6_a3,
     author = {M. V. Karasev and V. E. Nazaikinskii},
     title = {On the quantization of rapidly oscillating symbols},
     journal = {Sbornik. Mathematics},
     pages = {737--764},
     year = {1978},
     volume = {34},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_6_a3/}
}
TY  - JOUR
AU  - M. V. Karasev
AU  - V. E. Nazaikinskii
TI  - On the quantization of rapidly oscillating symbols
JO  - Sbornik. Mathematics
PY  - 1978
SP  - 737
EP  - 764
VL  - 34
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_1978_34_6_a3/
LA  - en
ID  - SM_1978_34_6_a3
ER  - 
%0 Journal Article
%A M. V. Karasev
%A V. E. Nazaikinskii
%T On the quantization of rapidly oscillating symbols
%J Sbornik. Mathematics
%D 1978
%P 737-764
%V 34
%N 6
%U http://geodesic.mathdoc.fr/item/SM_1978_34_6_a3/
%G en
%F SM_1978_34_6_a3
M. V. Karasev; V. E. Nazaikinskii. On the quantization of rapidly oscillating symbols. Sbornik. Mathematics, Tome 34 (1978) no. 6, pp. 737-764. http://geodesic.mathdoc.fr/item/SM_1978_34_6_a3/

[1] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, izd-vo MGU, Moskva, 1965

[2] V. P. Maslov, Operatornye metody, izd-vo “Nauka”, Moskva, 1973 | MR

[3] L. Khërmander, “Integralnye operatory Fure. I”, Matematika, 16:1 (1972), 17–61 | Zbl

[4] R. Feinman, “Ob operatornom ischislenii, imeyuschem prilozheniya v kvantovoi elektrodinamike”, Problemy sovrem. fiziki, 3, 1955, 37–79

[5] F. A. Berezin, “Ob odnom predstavlenii operatorov s pomoschyu funktsionalov”, Trudy Mosk. matem. ob-va, XVIII (1967), 117–196 | MR

[6] V. S. Buslaev, “Kvantovanie i metod BKB”, Trudy matem. in-ta im. V. A. Steklova, SKh (1970), 5–28 | MR | Zbl

[7] B. Kostant, “Quantization and Unitary Representations”, Lecture Notes in Math., 170, Springer-Verlag, Berlin, 1970 | MR

[8] H. R. Fischer, “Limesräume”, Math. Ann., 137 (1959), 269–303 | DOI | MR | Zbl

[9] C. H. Cook, H. R. Fischer, “Uniform convergence structures”, Math. Ann., 173 (1967), 290–306 | DOI | MR | Zbl

[10] M. V. Karasev, Ob uporyadochennom kvantovanii, Rukopis deponirovana v VINITI 11 fevralya 1975 g., No 304-75 Del.

[11] M. V. Karasev, “Razlozhenie funktsii ot nekommutiruyuschikh operatorov”, DAN SSSR, 214:6 (1974), 1254–1257 | MR | Zbl

[12] M. V. Karasev, “Ischislenie uporyadochennykh operatorov na faktor-algebre”, Matem. zametki, 15:5 (1974), 775–786 | MR | Zbl

[13] M. V. Karasev, “Nekotorye formuly dlya funktsii ot nekommutiruyuschikh operatorov”, Matem. zametki, 18:2 (1975), 267–277 | MR | Zbl

[14] M. V. Karasev, Kompozitsiya psevdodifferentsialnogo operatora i operatora s ostsilliruyuschim simvolom, Rukopis deponirovana v VINITI 11 fevralya 1975 g., No 303-75 Dep.

[15] L. Khërmander, Psevdodifferentsialnye operatory, izd-vo “Mir”, Moskva, 1967, 63–87 | MR

[16] M. V. Fedoryuk, “Metod statsionarnoi fazy i psevdodifferentsialnye operatory”, Uspekhi matem. nauk, XXVI:1(157) (1971), 67–87

[17] V. V. Kucherenko, “Formula kommutatsii psevdodifferentsialnogo operatora s bystroostsilliruyuschei eksponentoi”, Matem. sb., 94(136) (1974), 89–113 | Zbl

[18] M. V. Karasev, “Ischislenie pochti-proizvodyaschikh uporyadochennykh operatorov,”, Trudy MIEM, 1974, no. 38, 73–115 | MR

[19] Yu. V. Egorov, “O kanonicheskikh preobrazovaniyakh psevdodifferentsialnykh operatorov”, Uspekhi matem. nauk, XXIV:5(149) (1969), 235–236

[20] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, izd-vo “Nauka”, Moskva, 1974 | MR

[21] A. S. Mischenko, B. Yu. Sternin, V. E. Shatalov, Metod kanonicheskogo operatora Maslova, MIEM, Moskva, 1974

[22] V. I. Smirnov, Kurs vysshei matematiki, t. IV, Gostekhizdat, Moskva–Leningrad, 1951