On local estimates near the boundary of solutions of a~second order equation with nonnegative characteristic form
Sbornik. Mathematics, Tome 34 (1978) no. 6, pp. 715-735
Voir la notice de l'article provenant de la source Math-Net.Ru
Using barrier functions the authors study the connection between the geometric configuration of a domain, the order of degeneracy of the highest coefficients of an equation (near the boundary) and the behavior of solutions of these equations near the boundary of the domain of continuity of the solutions. The results obtained can be applied first to study local regularity of solutions near the boundary and secondly to theorems of Giraud type on the sign of the oblique derivative at boundary points when the solution attains its extremal values.
Bibliography: 10 titles.
@article{SM_1978_34_6_a2,
author = {L. I. Kamynin and B. N. Khimchenko},
title = {On local estimates near the boundary of solutions of a~second order equation with nonnegative characteristic form},
journal = {Sbornik. Mathematics},
pages = {715--735},
publisher = {mathdoc},
volume = {34},
number = {6},
year = {1978},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1978_34_6_a2/}
}
TY - JOUR AU - L. I. Kamynin AU - B. N. Khimchenko TI - On local estimates near the boundary of solutions of a~second order equation with nonnegative characteristic form JO - Sbornik. Mathematics PY - 1978 SP - 715 EP - 735 VL - 34 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1978_34_6_a2/ LA - en ID - SM_1978_34_6_a2 ER -
%0 Journal Article %A L. I. Kamynin %A B. N. Khimchenko %T On local estimates near the boundary of solutions of a~second order equation with nonnegative characteristic form %J Sbornik. Mathematics %D 1978 %P 715-735 %V 34 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1978_34_6_a2/ %G en %F SM_1978_34_6_a2
L. I. Kamynin; B. N. Khimchenko. On local estimates near the boundary of solutions of a~second order equation with nonnegative characteristic form. Sbornik. Mathematics, Tome 34 (1978) no. 6, pp. 715-735. http://geodesic.mathdoc.fr/item/SM_1978_34_6_a2/