Integrability of the Euler equations on homogeneous symplectic manifolds
Sbornik. Mathematics, Tome 34 (1978) no. 6, pp. 707-713 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Any strictly homogeneous symplectic manifold $M$ with a group of motions $\mathscr G$ may be considered as an orbit of the coadjoint action of $\mathscr G$. Therefore all Hamiltonian systems defined on an orbit, in particular Euler's equations, are carried over to $M$ in a natural way. In this paper a multiparameter family of systems of Euler equations is constructed on $M$, and their complete integrability (in the Liouville sense) is proved. Bibliography: 6 titles.
@article{SM_1978_34_6_a1,
     author = {D\`ao Trong Thi},
     title = {Integrability of the {Euler} equations on homogeneous symplectic manifolds},
     journal = {Sbornik. Mathematics},
     pages = {707--713},
     year = {1978},
     volume = {34},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_6_a1/}
}
TY  - JOUR
AU  - Dào Trong Thi
TI  - Integrability of the Euler equations on homogeneous symplectic manifolds
JO  - Sbornik. Mathematics
PY  - 1978
SP  - 707
EP  - 713
VL  - 34
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_1978_34_6_a1/
LA  - en
ID  - SM_1978_34_6_a1
ER  - 
%0 Journal Article
%A Dào Trong Thi
%T Integrability of the Euler equations on homogeneous symplectic manifolds
%J Sbornik. Mathematics
%D 1978
%P 707-713
%V 34
%N 6
%U http://geodesic.mathdoc.fr/item/SM_1978_34_6_a1/
%G en
%F SM_1978_34_6_a1
Dào Trong Thi. Integrability of the Euler equations on homogeneous symplectic manifolds. Sbornik. Mathematics, Tome 34 (1978) no. 6, pp. 707-713. http://geodesic.mathdoc.fr/item/SM_1978_34_6_a1/

[1] A. A. Kirillov, Elementy teorii predstavlenii, izd-vo “Nauka”, Moskva, 1972 | MR

[2] A. S. Mischenko, A. T. Fomenko, “Ob integrirovanii uravnenii Eilera na poluprostykh algebrakh Li”, DAN SSSR, 231:3 (1976), 536–538 | MR | Zbl

[3] A. S. Mischenko, A. T. Fomenko, “Integriruemost uravnenii Eilera na poluprostykh algebrakh Li”, Trudy seminara po vekt. i tenz. analizu, 19 (1978) | Zbl

[4] S. V. Manakov, “Zamechanie ob integrirovanii uravnenii Eilera dinamiki $n$-mernogo tverdogo tela”, Funkts. analiz, 10:4 (1976), 93–94 | MR | Zbl

[5] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, izd-vo “Nauka”, Moskva, 1974 | MR

[6] A. S. Mischenko, “Integraly geodezicheskikh potokov na gruppakh Li”, Funkts. analiz, 4:3 (1970), 73–78 | MR