Integrability of the Euler equations on homogeneous symplectic manifolds
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 34 (1978) no. 6, pp. 707-713
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Any strictly homogeneous symplectic manifold $M$ with a group of motions $\mathscr G$ may be considered as an orbit of the coadjoint action of $\mathscr G$. Therefore all Hamiltonian systems defined on an orbit, in particular Euler's equations, are carried over to $M$ in a natural way. In this paper a multiparameter family of systems of Euler equations is constructed on $M$, and their complete integrability (in the Liouville sense) is proved.
Bibliography: 6 titles.
			
            
            
            
          
        
      @article{SM_1978_34_6_a1,
     author = {D\`ao Trong Thi},
     title = {Integrability of the {Euler} equations on homogeneous symplectic manifolds},
     journal = {Sbornik. Mathematics},
     pages = {707--713},
     publisher = {mathdoc},
     volume = {34},
     number = {6},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_6_a1/}
}
                      
                      
                    Dào Trong Thi. Integrability of the Euler equations on homogeneous symplectic manifolds. Sbornik. Mathematics, Tome 34 (1978) no. 6, pp. 707-713. http://geodesic.mathdoc.fr/item/SM_1978_34_6_a1/
