Integrability of the Euler equations on homogeneous symplectic manifolds
Sbornik. Mathematics, Tome 34 (1978) no. 6, pp. 707-713
Cet article a éte moissonné depuis la source Math-Net.Ru
Any strictly homogeneous symplectic manifold $M$ with a group of motions $\mathscr G$ may be considered as an orbit of the coadjoint action of $\mathscr G$. Therefore all Hamiltonian systems defined on an orbit, in particular Euler's equations, are carried over to $M$ in a natural way. In this paper a multiparameter family of systems of Euler equations is constructed on $M$, and their complete integrability (in the Liouville sense) is proved. Bibliography: 6 titles.
@article{SM_1978_34_6_a1,
author = {D\`ao Trong Thi},
title = {Integrability of the {Euler} equations on homogeneous symplectic manifolds},
journal = {Sbornik. Mathematics},
pages = {707--713},
year = {1978},
volume = {34},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1978_34_6_a1/}
}
Dào Trong Thi. Integrability of the Euler equations on homogeneous symplectic manifolds. Sbornik. Mathematics, Tome 34 (1978) no. 6, pp. 707-713. http://geodesic.mathdoc.fr/item/SM_1978_34_6_a1/
[1] A. A. Kirillov, Elementy teorii predstavlenii, izd-vo “Nauka”, Moskva, 1972 | MR
[2] A. S. Mischenko, A. T. Fomenko, “Ob integrirovanii uravnenii Eilera na poluprostykh algebrakh Li”, DAN SSSR, 231:3 (1976), 536–538 | MR | Zbl
[3] A. S. Mischenko, A. T. Fomenko, “Integriruemost uravnenii Eilera na poluprostykh algebrakh Li”, Trudy seminara po vekt. i tenz. analizu, 19 (1978) | Zbl
[4] S. V. Manakov, “Zamechanie ob integrirovanii uravnenii Eilera dinamiki $n$-mernogo tverdogo tela”, Funkts. analiz, 10:4 (1976), 93–94 | MR | Zbl
[5] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, izd-vo “Nauka”, Moskva, 1974 | MR
[6] A. S. Mischenko, “Integraly geodezicheskikh potokov na gruppakh Li”, Funkts. analiz, 4:3 (1970), 73–78 | MR