Integrability of the Euler equations on homogeneous symplectic manifolds
Sbornik. Mathematics, Tome 34 (1978) no. 6, pp. 707-713

Voir la notice de l'article provenant de la source Math-Net.Ru

Any strictly homogeneous symplectic manifold $M$ with a group of motions $\mathscr G$ may be considered as an orbit of the coadjoint action of $\mathscr G$. Therefore all Hamiltonian systems defined on an orbit, in particular Euler's equations, are carried over to $M$ in a natural way. In this paper a multiparameter family of systems of Euler equations is constructed on $M$, and their complete integrability (in the Liouville sense) is proved. Bibliography: 6 titles.
@article{SM_1978_34_6_a1,
     author = {D\`ao Trong Thi},
     title = {Integrability of the {Euler} equations on homogeneous symplectic manifolds},
     journal = {Sbornik. Mathematics},
     pages = {707--713},
     publisher = {mathdoc},
     volume = {34},
     number = {6},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_6_a1/}
}
TY  - JOUR
AU  - Dào Trong Thi
TI  - Integrability of the Euler equations on homogeneous symplectic manifolds
JO  - Sbornik. Mathematics
PY  - 1978
SP  - 707
EP  - 713
VL  - 34
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1978_34_6_a1/
LA  - en
ID  - SM_1978_34_6_a1
ER  - 
%0 Journal Article
%A Dào Trong Thi
%T Integrability of the Euler equations on homogeneous symplectic manifolds
%J Sbornik. Mathematics
%D 1978
%P 707-713
%V 34
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1978_34_6_a1/
%G en
%F SM_1978_34_6_a1
Dào Trong Thi. Integrability of the Euler equations on homogeneous symplectic manifolds. Sbornik. Mathematics, Tome 34 (1978) no. 6, pp. 707-713. http://geodesic.mathdoc.fr/item/SM_1978_34_6_a1/