On Picard–Vessiot extensions of differential fields
Sbornik. Mathematics, Tome 34 (1978) no. 6, pp. 701-706
Cet article a éte moissonné depuis la source Math-Net.Ru
A characterization is given of Picard–Vessiot elements over a partial differential field of characteristic zero. The structure of such elements that generate extensions of transcendence degree one is described. Bibliography: 6 titles.
@article{SM_1978_34_6_a0,
author = {N. V. Grigorenko},
title = {On {Picard{\textendash}Vessiot} extensions of differential fields},
journal = {Sbornik. Mathematics},
pages = {701--706},
year = {1978},
volume = {34},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1978_34_6_a0/}
}
N. V. Grigorenko. On Picard–Vessiot extensions of differential fields. Sbornik. Mathematics, Tome 34 (1978) no. 6, pp. 701-706. http://geodesic.mathdoc.fr/item/SM_1978_34_6_a0/
[1] E. R. Kolchin, Differential algebra and algebraic groups, Academic Press, New York, 1973 | MR | Zbl
[2] E. R. Kolchin, “Constrained extentions of differential fields”, Advances in Math., 12 (1974), 141–170 | DOI | MR | Zbl
[3] E. R. Kolchin, “Some problems in differential algebra” (Moscow), Proc. Int. Congr. Math., 1966, 269–276, Moscow | MR
[4] E. R. Kolchin, “Galois theory of differential fields”, Amer. J. Math., 75, 1953 | MR | Zbl
[5] M. F. Singer, “Solutions of linear differential equations in functions fields of one variable”, Proc. Amer. Math. Soc., 54 (1976), 69–72 | DOI | MR | Zbl
[6] A. Borel, Lineinye algebraicheskie gruppy, izd-vo “Mir”, Moskva, 1972 | MR