The stabilization of symplectic groups over a~polynomial ring
Sbornik. Mathematics, Tome 34 (1978) no. 5, pp. 655-669

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if $B$ is a polynomial ring over a field, then for $r\geqslant2$, any element of $Sp_{2r}B$ can be written as a product of elementary symplectic matrices over $B$. We also prove a stabilization theorem for the symplectic $K_1$-functor in the case of polynomial rings and Laurent rings. Bibliography: 6 titles.
@article{SM_1978_34_5_a5,
     author = {V. I. Kopeiko},
     title = {The stabilization of symplectic groups over a~polynomial ring},
     journal = {Sbornik. Mathematics},
     pages = {655--669},
     publisher = {mathdoc},
     volume = {34},
     number = {5},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_5_a5/}
}
TY  - JOUR
AU  - V. I. Kopeiko
TI  - The stabilization of symplectic groups over a~polynomial ring
JO  - Sbornik. Mathematics
PY  - 1978
SP  - 655
EP  - 669
VL  - 34
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1978_34_5_a5/
LA  - en
ID  - SM_1978_34_5_a5
ER  - 
%0 Journal Article
%A V. I. Kopeiko
%T The stabilization of symplectic groups over a~polynomial ring
%J Sbornik. Mathematics
%D 1978
%P 655-669
%V 34
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1978_34_5_a5/
%G en
%F SM_1978_34_5_a5
V. I. Kopeiko. The stabilization of symplectic groups over a~polynomial ring. Sbornik. Mathematics, Tome 34 (1978) no. 5, pp. 655-669. http://geodesic.mathdoc.fr/item/SM_1978_34_5_a5/