The stabilization of symplectic groups over a~polynomial ring
Sbornik. Mathematics, Tome 34 (1978) no. 5, pp. 655-669
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that if $B$ is a polynomial ring over a field, then for $r\geqslant2$, any element of $Sp_{2r}B$ can be written as a product of elementary symplectic matrices over $B$.
We also prove a stabilization theorem for the symplectic $K_1$-functor in the case of polynomial rings and Laurent rings.
Bibliography: 6 titles.
@article{SM_1978_34_5_a5,
author = {V. I. Kopeiko},
title = {The stabilization of symplectic groups over a~polynomial ring},
journal = {Sbornik. Mathematics},
pages = {655--669},
publisher = {mathdoc},
volume = {34},
number = {5},
year = {1978},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1978_34_5_a5/}
}
V. I. Kopeiko. The stabilization of symplectic groups over a~polynomial ring. Sbornik. Mathematics, Tome 34 (1978) no. 5, pp. 655-669. http://geodesic.mathdoc.fr/item/SM_1978_34_5_a5/