On some characteristics of the growth of subharmonic functions
Sbornik. Mathematics, Tome 34 (1978) no. 5, pp. 603-626 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The connection between the growth of a function which is subharmonic in the plane and the growth of its associated Riesz measure is studied. The principal result (actually obtained in a more general form) is: Theorem. {\it Suppose that the function $h(r)$ is differentiable on $(0,\infty)$, with $h'(x)>0$ and $$ \lim_{x\to\infty}\frac{\ln x}{h(x)}=0,\qquad\lim_{x\to\infty}\frac{x\cdot h'(x)}{h(x)}=0. $$ Define $$ \alpha_h(r)=\max_{1<\theta<\infty}\frac{\ln\theta}{h(\theta\cdot r)},\qquad\Delta_h=\varliminf_{r\to\infty}rh'(r)\alpha_h(r). $$ Suppose further that $\varphi(u)$ is a function which is subharmonic in $\mathbf R^2$, is of zero order, and has associated measure $\mu$. Then \begin{gather*} \Delta_h\varlimsup_{r\to\infty}\frac{\mu(r)}{rh'(r)}\leqslant\varlimsup_{r\to\infty}\frac{M_\varphi(r)}{h(r)} \leqslant\varlimsup_{r\to\infty}\frac{\mu(r)}{rh'(r)},\\ \varliminf_{r\to\infty}\frac{M_\varphi(r)}{h(r)}\geqslant\varliminf_{r\to\infty}\frac{\mu(r)}{rh'(r)}, \end{gather*} where $$ \mu(r)=\mu(|z|\leqslant r),\qquadM_\varphi(r)\max\bigl\{0,\{\varphi(u):|u|=r\}\bigr\}. $$ If, in addition, $x\cdot h'(x)/h(x)$ is nonincreasing, then $\Delta_h\geqslant1/e$.} Bibliography: 12 titles.
@article{SM_1978_34_5_a2,
     author = {A. V. Bratishchev and Yu. F. Korobeinik},
     title = {On some characteristics of the growth of subharmonic functions},
     journal = {Sbornik. Mathematics},
     pages = {603--626},
     year = {1978},
     volume = {34},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_5_a2/}
}
TY  - JOUR
AU  - A. V. Bratishchev
AU  - Yu. F. Korobeinik
TI  - On some characteristics of the growth of subharmonic functions
JO  - Sbornik. Mathematics
PY  - 1978
SP  - 603
EP  - 626
VL  - 34
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_1978_34_5_a2/
LA  - en
ID  - SM_1978_34_5_a2
ER  - 
%0 Journal Article
%A A. V. Bratishchev
%A Yu. F. Korobeinik
%T On some characteristics of the growth of subharmonic functions
%J Sbornik. Mathematics
%D 1978
%P 603-626
%V 34
%N 5
%U http://geodesic.mathdoc.fr/item/SM_1978_34_5_a2/
%G en
%F SM_1978_34_5_a2
A. V. Bratishchev; Yu. F. Korobeinik. On some characteristics of the growth of subharmonic functions. Sbornik. Mathematics, Tome 34 (1978) no. 5, pp. 603-626. http://geodesic.mathdoc.fr/item/SM_1978_34_5_a2/

[1] M. Brelot, “Etude des fonctions sousharmoniques au voisinage d'un point singulier”, Ann. Inst. Fourier, 1 (1950), 121–156 | MR

[2] L. I. Ronkin, Vvedenie v teoriyu tselykh funktsii mnogikh peremennykh, izd-vo “Nauka”, Moskva, 1971 | MR

[3] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, Moskva, 1956

[4] R. Mattson, Sur les fonctions entieres d'ordre zero, Upsala, These, 1905 | Zbl

[5] M. A. Evgrafov, Asimptoticheskie otsenki i tselye funktsii, Gostekhizdat, Moskva, 1957

[6] A. A. Goldberg, “Integral po poluadditivnoi mere i ego prilozhenie k teorii tselykh funktsii. II”, Matem. sb., 61(103) (1963), 334–349 | MR

[7] Z. A. Rulel, B. A. Taylor, “A Fouries series method for meromorphic and entire functions”, Bull. Soc. math. France, 96 (1968), 56–59

[8] A. V. Bratischev, Yu. F. Korobeinik, “Kratnaya interpolyatsionnaya zadacha v prostranstve tselykh funktsii zadannogo utochnennogo poryadka”, Izv. AN SSSR, seriya matem., 40 (1976), 1102–1127 | MR | Zbl

[9] A. V. Bratischev, Interpolyatsionnaya zadacha v prostranstvakh tselykh funktsii i ee prilozhenie v teorii bazisa, Kand. dissertatsiya, Rostov-na-Donu, 1976

[10] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, izd-vo “Nauka”, Moskva, 1974

[11] V. I. Chernolyas, “O raspredelenii kornei tselykh funktsii obobschennogo vpolne regulyarnogo rosta koleblyuschegosya poryadka”, DAN SSSR, 224,:3 (1975), 549–552 | MR | Zbl

[12] Zh. Valiron, Analiticheskie funktsii, Gostekhizdat, Moskva, 1957