On some characteristics of the growth of subharmonic functions
Sbornik. Mathematics, Tome 34 (1978) no. 5, pp. 603-626
Voir la notice de l'article provenant de la source Math-Net.Ru
The connection between the growth of a function which is subharmonic in the plane and the growth of its associated Riesz measure is studied. The principal result (actually obtained in a more general form) is:
Theorem. {\it Suppose that the function $h(r)$ is differentiable on $(0,\infty)$, with $h'(x)>0$ and
$$
\lim_{x\to\infty}\frac{\ln x}{h(x)}=0,\qquad\lim_{x\to\infty}\frac{x\cdot h'(x)}{h(x)}=0.
$$
Define
$$
\alpha_h(r)=\max_{1\theta\infty}\frac{\ln\theta}{h(\theta\cdot r)},\qquad\Delta_h=\varliminf_{r\to\infty}rh'(r)\alpha_h(r).
$$
Suppose further that $\varphi(u)$ is a function which is subharmonic in $\mathbf R^2$, is of zero order, and has associated measure $\mu$. Then
\begin{gather*}
\Delta_h\varlimsup_{r\to\infty}\frac{\mu(r)}{rh'(r)}\leqslant\varlimsup_{r\to\infty}\frac{M_\varphi(r)}{h(r)}
\leqslant\varlimsup_{r\to\infty}\frac{\mu(r)}{rh'(r)},\\
\varliminf_{r\to\infty}\frac{M_\varphi(r)}{h(r)}\geqslant\varliminf_{r\to\infty}\frac{\mu(r)}{rh'(r)},
\end{gather*}
where
$$
\mu(r)=\mu(|z|\leqslant r),\qquadM_\varphi(r)\max\bigl\{0,\{\varphi(u):|u|=r\}\bigr\}.
$$
If, in addition, $x\cdot h'(x)/h(x)$ is nonincreasing, then $\Delta_h\geqslant1/e$.}
Bibliography: 12 titles.
@article{SM_1978_34_5_a2,
author = {A. V. Bratishchev and Yu. F. Korobeinik},
title = {On some characteristics of the growth of subharmonic functions},
journal = {Sbornik. Mathematics},
pages = {603--626},
publisher = {mathdoc},
volume = {34},
number = {5},
year = {1978},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1978_34_5_a2/}
}
A. V. Bratishchev; Yu. F. Korobeinik. On some characteristics of the growth of subharmonic functions. Sbornik. Mathematics, Tome 34 (1978) no. 5, pp. 603-626. http://geodesic.mathdoc.fr/item/SM_1978_34_5_a2/