On the geometric structure of the image of a~disk under mappings by meromorphic functions
Sbornik. Mathematics, Tome 34 (1978) no. 5, pp. 593-601

Voir la notice de l'article provenant de la source Math-Net.Ru

In a recent paper by the author a new geometric definition of deficient values for a function $\omega(z)$ meromorphic in $|z|\infty$ was introduced, and with its aid a connection between the geometric structure of $F_r=\{\omega(z):|z|\leqslant r\}$ and the distribution of values of $\omega(z)$ was established. In the present paper definitions characterizing the structure of $\partial F_r$, more delicately are introduced, and a more detailed study of these connections is carried out. As a by-product a theorem of Miles is obtained as a corollary. This theorem complements, in a sense, Ahlfors' second fundamental theorem of the theory of covering surfaces. Bibliography: 3 titles.
@article{SM_1978_34_5_a1,
     author = {G. A. Barsegyan},
     title = {On the geometric structure of the image of a~disk under mappings by meromorphic functions},
     journal = {Sbornik. Mathematics},
     pages = {593--601},
     publisher = {mathdoc},
     volume = {34},
     number = {5},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_5_a1/}
}
TY  - JOUR
AU  - G. A. Barsegyan
TI  - On the geometric structure of the image of a~disk under mappings by meromorphic functions
JO  - Sbornik. Mathematics
PY  - 1978
SP  - 593
EP  - 601
VL  - 34
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1978_34_5_a1/
LA  - en
ID  - SM_1978_34_5_a1
ER  - 
%0 Journal Article
%A G. A. Barsegyan
%T On the geometric structure of the image of a~disk under mappings by meromorphic functions
%J Sbornik. Mathematics
%D 1978
%P 593-601
%V 34
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1978_34_5_a1/
%G en
%F SM_1978_34_5_a1
G. A. Barsegyan. On the geometric structure of the image of a~disk under mappings by meromorphic functions. Sbornik. Mathematics, Tome 34 (1978) no. 5, pp. 593-601. http://geodesic.mathdoc.fr/item/SM_1978_34_5_a1/