Localization of ideals and asymptotic uniqueness theorems for functions with restrictions on growth
Sbornik. Mathematics, Tome 34 (1978) no. 5, pp. 561-592

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbf D=\{z\in\mathbf C:|z|1\}$; let $U_\varphi(\mathbf D)$ be the set of all functions $u$, subharmonic in $\mathbf D$, for which $u(z)$; and let $A_\varphi(\mathbf D)$ be the algebra of all functions $f$, analytic in $\mathbf D$, for which $\log|f(z)|$. We prove the following theorems subject to known restrictions on the regularity of growth of the function $\varphi$. Theorem 1. If $\gamma$ is a continuous curve in $\mathbf D$ reaching out to the circle $\partial\mathbf D$ (i.e., $\gamma\cap\partial\mathbf D\ne\varnothing$), and if $$ \varlimsup_{z\in\gamma,|z|\to1}\frac{u(z)}{\varphi^*(1/(1-|z|))}=-\infty, $$ then $u\equiv-\infty$. Here, $\varphi^*(t)=t\bigl(\int_1^t(\varphi(x)/x^3)^{1/2}\,dx\bigr)^2$ for $a_\varphi\leqslant1$, $\varphi^*=\varphi$ for $1$; and $a_\varphi=\lim_{x\to\infty}\varphi'(x)x/\varphi(x)$. Theorem 2. {\it In order that every closed ideal of the algebra $A_\varphi(\mathbf D)$ be a divisor ideal, it is necessary and sufficient that the condition $\int_1^\infty(\varphi(x)/x^3)^{1/2}\,dx=+\infty$ be satisfied.} Here, we say that an ideal $I$ is a divisor ideal when $I=\{f\in A_\varphi(\mathbf D):k_f\geqslant k_I\}$, where $k_f(\xi)$ is the multiplicity of a zero of the function $f$ at the point $\xi$ and $k_I(\xi)=\min_{f\in I}k_f(\xi)$. Figures: 5. Bibliography: 33 titles.
@article{SM_1978_34_5_a0,
     author = {S. A. Apresyan},
     title = {Localization of ideals and asymptotic uniqueness theorems for functions with restrictions on growth},
     journal = {Sbornik. Mathematics},
     pages = {561--592},
     publisher = {mathdoc},
     volume = {34},
     number = {5},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_5_a0/}
}
TY  - JOUR
AU  - S. A. Apresyan
TI  - Localization of ideals and asymptotic uniqueness theorems for functions with restrictions on growth
JO  - Sbornik. Mathematics
PY  - 1978
SP  - 561
EP  - 592
VL  - 34
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1978_34_5_a0/
LA  - en
ID  - SM_1978_34_5_a0
ER  - 
%0 Journal Article
%A S. A. Apresyan
%T Localization of ideals and asymptotic uniqueness theorems for functions with restrictions on growth
%J Sbornik. Mathematics
%D 1978
%P 561-592
%V 34
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1978_34_5_a0/
%G en
%F SM_1978_34_5_a0
S. A. Apresyan. Localization of ideals and asymptotic uniqueness theorems for functions with restrictions on growth. Sbornik. Mathematics, Tome 34 (1978) no. 5, pp. 561-592. http://geodesic.mathdoc.fr/item/SM_1978_34_5_a0/