Localization of ideals and asymptotic uniqueness theorems for functions with restrictions on growth
Sbornik. Mathematics, Tome 34 (1978) no. 5, pp. 561-592 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathbf D=\{z\in\mathbf C:|z|<1\}$; let $U_\varphi(\mathbf D)$ be the set of all functions $u$, subharmonic in $\mathbf D$, for which $u(z); and let $A_\varphi(\mathbf D)$ be the algebra of all functions $f$, analytic in $\mathbf D$, for which $\log|f(z)|. We prove the following theorems subject to known restrictions on the regularity of growth of the function $\varphi$. Theorem 1. If $\gamma$ is a continuous curve in $\mathbf D$ reaching out to the circle $\partial\mathbf D$ (i.e., $\gamma\cap\partial\mathbf D\ne\varnothing$), and if $$ \varlimsup_{z\in\gamma,|z|\to1}\frac{u(z)}{\varphi^*(1/(1-|z|))}=-\infty, $$ then $u\equiv-\infty$. Here, $\varphi^*(t)=t\bigl(\int_1^t(\varphi(x)/x^3)^{1/2}\,dx\bigr)^2$ for $a_\varphi\leqslant1$, $\varphi^*=\varphi$ for $1; and $a_\varphi=\lim_{x\to\infty}\varphi'(x)x/\varphi(x)$. Theorem 2. {\it In order that every closed ideal of the algebra $A_\varphi(\mathbf D)$ be a divisor ideal, it is necessary and sufficient that the condition $\int_1^\infty(\varphi(x)/x^3)^{1/2}\,dx=+\infty$ be satisfied.} Here, we say that an ideal $I$ is a divisor ideal when $I=\{f\in A_\varphi(\mathbf D):k_f\geqslant k_I\}$, where $k_f(\xi)$ is the multiplicity of a zero of the function $f$ at the point $\xi$ and $k_I(\xi)=\min_{f\in I}k_f(\xi)$. Figures: 5. Bibliography: 33 titles.
@article{SM_1978_34_5_a0,
     author = {S. A. Apresyan},
     title = {Localization of ideals and asymptotic uniqueness theorems for functions with restrictions on growth},
     journal = {Sbornik. Mathematics},
     pages = {561--592},
     year = {1978},
     volume = {34},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_5_a0/}
}
TY  - JOUR
AU  - S. A. Apresyan
TI  - Localization of ideals and asymptotic uniqueness theorems for functions with restrictions on growth
JO  - Sbornik. Mathematics
PY  - 1978
SP  - 561
EP  - 592
VL  - 34
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_1978_34_5_a0/
LA  - en
ID  - SM_1978_34_5_a0
ER  - 
%0 Journal Article
%A S. A. Apresyan
%T Localization of ideals and asymptotic uniqueness theorems for functions with restrictions on growth
%J Sbornik. Mathematics
%D 1978
%P 561-592
%V 34
%N 5
%U http://geodesic.mathdoc.fr/item/SM_1978_34_5_a0/
%G en
%F SM_1978_34_5_a0
S. A. Apresyan. Localization of ideals and asymptotic uniqueness theorems for functions with restrictions on growth. Sbornik. Mathematics, Tome 34 (1978) no. 5, pp. 561-592. http://geodesic.mathdoc.fr/item/SM_1978_34_5_a0/

[1] N. K. Nikolskii, Itogi nauki. Matem. analiz, 12, VINITI, Moskva, 1974

[2] L. Schwartz, Theorie des distributions, Hermann, Paris, 1966 | MR

[3] L. Carleson, “The corona theorem”, Lecture Notes in Math., 118 (1970), 121–132 | DOI | MR | Zbl

[4] L. Hörmander, “Generators for some rings of analytic functions”, Bull. Amer. Math. Soc., 73:6 (1967), 943–949 | DOI | MR | Zbl

[5] J. J. Kelleher, B. A. Taylor, “Closed ideals in locally convex algebras of analytic functions”, J. reine und angew. Math., 255 (1972), 130–209 | MR

[6] J.-P. Ferrier, Spectral theory and complex analysis, Nort-Holland, Amsterdam, 1973 | MR | Zbl

[7] A. Beurling, “A critical topology in harmonic analysis on semigroups”, Acta Math., 112:3–4 (1964), 215–228 | DOI | MR | Zbl

[8] A. F. Leontev, “Funktsii, periodicheskie v srednem”, 3-ya letnyaya matem. shkola. Konstruktivnaya teoriya funktsii, Naukova dumka, Kiev, 1966, 84–143 | MR

[9] L. Schwartz, “Theorie generale de fonctions moyenne-periodiques”, Ann. Math., 48:2 (1947), 857–929 | DOI | MR | Zbl

[10] I. F. Krasichkov, “O zamknutykh idealakh v lokalno vypukloi algebre tselykh funktsii s proizvolnoi mazhorantoi rosta”, DAN SSSR, 170:5 (1966), 1018–1019 | Zbl

[11] I. F. Krasichkov, “Invariantnye podprostranstva analiticheskikh funktsii”, Matem. sb., 87(129) (1972), 459–489 | Zbl

[12] N. K. Nikolskii, Izbrannye zadachi vesovoi approksimatsii i spektralnogo analiza, Trudy Matem. in-ta im. V. A. Steklova, 120, 1974 | MR

[13] V. A. Tkachenko, “Uravneniya tipa svertki v prostranstvakh analiticheskikh funktsionalov”, Izv. AN SSSR, seriya matem., 41 (1977), 378–392 | Zbl

[14] N. F. Krasichkov-Ternovskii, “Otsenki subgarmonicheskoi raznosti subgarmonicheskikh funktsii I; II”, Matem. sb., 102(144) (1977), 216–247

[15] N. K. Nikolskii, “Odnostoronnie i modulnye otsenki garmonicheskikh funktsii v kruge i v polose”, DAN SSSR, 205:3 (1972), 522–525

[16] M. L. Cartwright, “On analytic functions regular in the unit circle. I; II”, Quart. J. Math., 4 (1933), 246–256; 6 (1935), 94–105 | DOI | Zbl

[17] C. N. Linden, “The minimum modulus of functions regular and of finit order in the unit circle”, Quart. J. Math., 7:27 (1956) | MR | Zbl

[18] C. N. Linden, “The representation of regular functions”, J. London Math. Soc,, 39:153 (1964), 19–30 | DOI | MR | Zbl

[19] V. I. Matsaev, “Ob odnom metode otsenki rezolvent nesamosopryazhennykh operatorov”, DAN SSSR, 154:5 (1964), 1034–1037 | Zbl

[20] A. L. Shaginyan, “Ob odnom osnovnom neravenstve v teorii funktsii i ee prilozheniyakh”, Izv. AN ArmSSR, seriya fiz.-matem. nauk, 12:1 (1959), 3–25 | MR | Zbl

[21] V. S. Zakharyan, “Otsenki rosta dlya meromorfnykh funktsii klassa $N_\alpha$”, Izv. AN ArmSSR, Matematika, IX:2 (1974), 85–106

[22] I. V. Ushakova, “Nekotorye teoremy edinstvennosti dlya funktsii, subgarmonicheskikh i meromorfnykh v edinichnom kruge”, DAN SSSR, 137:6 (1961), 1319–1322 | Zbl

[23] N. Burbaki, Funktsii deistvitelnogo peremennogo, izd-vo “Nauka”, Moskva, 1965 | MR

[24] V. I. Matsaev, E. 3. Mogulskii, “Teorema deleniya dlya analiticheskikh funktsii s zadannoi mazhorantoi i nekotorye ee prilozheniya”, Zapiski nauchnykh seminarov LOMI, 56 (1976), 73–89 | MR | Zbl

[25] B. Korenblum, “A Beurling-type theorem”, Acta Math., 138:3–4 (1977), 265–293 | DOI | MR | Zbl

[26] M. Heins, Hardy classes on Riernann surfaces, Springer-Verlag, Berlin, 1969, 106 pp. | MR | Zbl

[27] M. A. Evgrafov, Asimptoticheskie otsenki i tselye funktsii, izd-vo “Nauka”, Moskva, 1968 | MR

[28] M. Brelo, Osnovy klassicheskoi teorii potentsiala, izd-vo “Mir”, Moskva, 1964 | MR

[29] S. Varshavskii, “O konformnom otobrazhenii beskonechnykh polos”, Matematika, 2:4 (1958), 66–116

[30] A. A. Goldberg, I. V. Ostrovskii, Raspredelenie znachenii meromorfnykh funktsii, izd-vo “Nauka”, Moskva, 1970 | MR

[31] M. A. Evgrafov, Analiticheskie funktsii, izd-vo “Nauka”, Moskva, 1968 | MR

[32] A. Ostrowski, “Über den Habitus der konformen Abbildung am Rande des Abbildungsbereiches”, Acta Math., 64 (1934), 81–185 | DOI | MR

[33] M. M. Dzhrbashyan, “Ob odnoi ekstremalnoi zadache iz teorii vzveshennykh ortogonalnykh polinomov”, Izv. AN SSSR, seriya matem., 12 (1948), 555–568 | Zbl