On a smooth selection theorem and its application to multivalued integral equations
Sbornik. Mathematics, Tome 34 (1978) no. 4, pp. 547-559 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In § 1 a theorem is proved on the existence of separately measurable, absolutely continuous sections of a type of multivalued mappings. This result is applied in § 2 to prove the existence of global solutions of multivalued integral equations of Volterra type. Bibliography: 16 titles.
@article{SM_1978_34_4_a8,
     author = {Phan V\u{a}n Chu'o'ng},
     title = {On a~smooth selection theorem and its application to multivalued integral equations},
     journal = {Sbornik. Mathematics},
     pages = {547--559},
     year = {1978},
     volume = {34},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_4_a8/}
}
TY  - JOUR
AU  - Phan Văn Chu'o'ng
TI  - On a smooth selection theorem and its application to multivalued integral equations
JO  - Sbornik. Mathematics
PY  - 1978
SP  - 547
EP  - 559
VL  - 34
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1978_34_4_a8/
LA  - en
ID  - SM_1978_34_4_a8
ER  - 
%0 Journal Article
%A Phan Văn Chu'o'ng
%T On a smooth selection theorem and its application to multivalued integral equations
%J Sbornik. Mathematics
%D 1978
%P 547-559
%V 34
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1978_34_4_a8/
%G en
%F SM_1978_34_4_a8
Phan Văn Chu'o'ng. On a smooth selection theorem and its application to multivalued integral equations. Sbornik. Mathematics, Tome 34 (1978) no. 4, pp. 547-559. http://geodesic.mathdoc.fr/item/SM_1978_34_4_a8/

[1] A. F. Filippov, “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestnik MGU, seriya matem., mekh., astron., fiz., khim., 2 (1959), 25–32 | Zbl

[2] N. Kikuchi, “Control problems of contigent equations”, Publ. R. I. M. S. Kyoto Univ., Ser. A., 3 (1967), 85–99 | DOI | MR | Zbl

[3] N. Lazota, Z. Opial, “An application of Kakutani-Kyfan theorem in theory of ordinary differential equations”, Bull. Acad. Pol. Sci., 13 (1965), 781–786 | MR

[4] Ch. Castaing, M. Valadier, “Equations differentielles multivoques dans les espaces vectoriels localement convexes”, Revue Inf. Rech. Op., 16 (1969), 3–16 | MR | Zbl

[5] M. Valadier, “Compléments sur les équations différentielles multivoques”, Séminaire d'Analyse convexe, Exp. No 11, Montpellier, 1971

[6] Ch. Castaing, “Intégrates convexes duales”, Seminaire d'Analyse convexe, Exp. No 6, Montpellier, 1973

[7] J. J. Moreau, “Rétraction d'une application”, Séminaire d'Analyse convexe, Exp. No 3, Montpellier, 1972

[8] J. J. Moreau, “Compléments sur les multiapplications à rétraction finie”, Séminaire d'Analyse convexe, Exp. No 9, Montpellier, 1974 | MR

[9] Ch. Castaing, “Un théorème d'existence de séctions séparement mesurables et séparement absolument continues”, Séminaire d'Analyse convexe, Exp. No 3, Montpellier, 1973

[10] R. J. Aumann, Measurable utility and the measurable choice theorem, Hebrew Univ., Jerusalem, 1967

[11] V. I. Arkin i V. L. Levin, “Vypuklost znachenii vektornykh integralnykh funktsionalov, teoremy izmerimogo vybora i variatsionnye zadachi”, Uspekhi matem. nauk, XXVII:3 (1972), 21–77 | MR

[12] N. Burbaki, Topologicheskie vektornye prostranstva, IL, Moskva, 1959

[13] N. Burbaki, Integrirovanie. Mery, integrirovanie mer, izd-vo “Nauka”, Moskva, 1967 | MR

[14] N. Burbaki, Vektornoe integrirovanie. Mera Khaara. Svertka i predstavleniya, izd-vo “Nauka”, Moskva, 1970 | MR

[15] P. Edvars, Funktsionalnyi analiz, izd-vo “Mir”, Moskva, 1970

[16] M. Valadier, “Un théorème d'inf-compacité”, Séminaire d'Analyse convexe, Exp. No 14, Montpellier, 1971