Approximation of functions of class $H^p$, $0$
Sbornik. Mathematics, Tome 34 (1978) no. 4, pp. 527-545
Voir la notice de l'article provenant de la source Math-Net.Ru
Definitive estimates are established for the approximation by Cesáro means $(C,\alpha)$, depending on the values of $\alpha$ ($-1\alpha\infty$), of the Taylor series of a function $f\in H^p$, $0$, on the boundary of the disk of convergence. The estimates are given in the metric of $H^p$.
Bibliography: 23 titles.
@article{SM_1978_34_4_a7,
author = {\`E. A. Storozhenko},
title = {Approximation of functions of class $H^p$, $0<p\leqslant1$},
journal = {Sbornik. Mathematics},
pages = {527--545},
publisher = {mathdoc},
volume = {34},
number = {4},
year = {1978},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1978_34_4_a7/}
}
È. A. Storozhenko. Approximation of functions of class $H^p$, $0