On the Dirichlet problem for Bellman's equation in a plane domain
Sbornik. Mathematics, Tome 34 (1978) no. 4, pp. 521-526
Cet article a éte moissonné depuis la source Math-Net.Ru
The Dirichlet problem for Bellman's equation in a plane domain is considered. It is proved that under certain restrictions regarding smoothness, “weak” nondegeneracy, and nondegeneracy along the normal to the boundary of the domain this problem has a generalized solution. Under additional conditions regarding smoothness the solution is also smooth. Bibliography: 2 titles.
@article{SM_1978_34_4_a6,
author = {M. V. Safonov},
title = {On the {Dirichlet} problem for {Bellman's} equation in a~plane domain},
journal = {Sbornik. Mathematics},
pages = {521--526},
year = {1978},
volume = {34},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1978_34_4_a6/}
}
M. V. Safonov. On the Dirichlet problem for Bellman's equation in a plane domain. Sbornik. Mathematics, Tome 34 (1978) no. 4, pp. 521-526. http://geodesic.mathdoc.fr/item/SM_1978_34_4_a6/
[1] M. V. Safonov, “O zadache Dirikhle dlya uravneniya Bellmana v ploskoi oblasti”, Matem. sb., 102(144) (1977), 260–279 | MR | Zbl
[2] 0. A. Oleinik, E. V. Radkevich, Uravneniya vtorogo poryadka s neotritsatelnoi kharakteristicheskoi formoi, Itogi nauki. Matem. analiz 1969, VINITI, Moskva, 1971 | MR | Zbl