A problem on Abelian groups
Sbornik. Mathematics, Tome 34 (1978) no. 4, pp. 461-474 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We solve Problem 44 in the book by L. Fuchs “Infinite Abelian Groups”, Vol. I, which asks for a classification of the groups $G$ having the following property: if $G$ is contained in the direct sum of reduced groups, then $nG$ for some $n>0$ is contained in a finite direct sum of these groups. A group has this property if and only if it has no unbounded factor groups that are direct sums of periodic cyclic groups. We also consider a generalization of this problem, when instead of the class of all reduced groups we take an arbitrary class of groups. We derive a number of properties of such groups. Bibliography: 8 titles.
@article{SM_1978_34_4_a3,
     author = {A. V. Ivanov},
     title = {A~problem on {Abelian} groups},
     journal = {Sbornik. Mathematics},
     pages = {461--474},
     year = {1978},
     volume = {34},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_4_a3/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - A problem on Abelian groups
JO  - Sbornik. Mathematics
PY  - 1978
SP  - 461
EP  - 474
VL  - 34
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1978_34_4_a3/
LA  - en
ID  - SM_1978_34_4_a3
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T A problem on Abelian groups
%J Sbornik. Mathematics
%D 1978
%P 461-474
%V 34
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1978_34_4_a3/
%G en
%F SM_1978_34_4_a3
A. V. Ivanov. A problem on Abelian groups. Sbornik. Mathematics, Tome 34 (1978) no. 4, pp. 461-474. http://geodesic.mathdoc.fr/item/SM_1978_34_4_a3/

[1] L. Fuks, Beskonechnye abelevy gruppy, t. 1, izd-vo “Mir”, Moskva, 1974

[2] A. P. Mishina, L. A. Skornyakov, Abelevy gruppy i moduli, izd-vo “Nauka”, Moskva, 1969 | MR

[3] A. G. Kurosh, “Radikaly v teorii grupp”, Sib. matem. zh., 3:6 (1962), 912–931 | Zbl

[4] V. S. Rokhlina, “Nekotorye klassy abelevykh grupp”, Matem. sb., 83(125) (1970), 214–221 | Zbl

[5] S. Chase, “On direct sums and products of modules”, Pacific J. Math., 12:3 (1962), 847–854 | MR | Zbl

[6] D. Arnold, C. Murley, “Abelian groups $A$, such that $\operatorname{Ham}(A,-)$ preserves direct sums of copies of $A$”, Pacific. J. Math., 56:1 (1975), 7–20 | MR | Zbl

[7] R. Nunke, “Slender groups”, Acta scient. Math., 23:1–2 (1962), 67–73 | MR | Zbl

[8] L. Fuchs, Abelian groups, Publishing House of the Hungarian Academy of Science, Budapest, 1958 | MR