An expression for the solution of a differential equation in terms of iterates of differential operators
Sbornik. Mathematics, Tome 34 (1978) no. 4, pp. 411-424 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain theorems on the expression of $A^{-1}$ in terms of iterates of the operator $A$, which is the reproducing operator of a $1$-parameter group of linear transformations of a Banach space, and whose spectrum does not surround $0$. These results are applied to first order differential equations with analytic coefficients and right-hand sides (symmetric first order systems on a compact manifold without boundary), and to second order elliptic equations (equations with a real principal part on a manifold without boundary, selfadjoint equations degenerate on the boundary of the domain, and the Dirichlet problem for a selfadjoint equation in a domain with an analytic boundary). We obtain formulas expressing the value of the solution at a point in terms of the derivatives of the coefficients and the right-hand side at this point. Bibliography: 9 titles.
@article{SM_1978_34_4_a0,
     author = {A. V. Babin},
     title = {An expression for the solution of a~differential equation in terms of iterates of differential operators},
     journal = {Sbornik. Mathematics},
     pages = {411--424},
     year = {1978},
     volume = {34},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_4_a0/}
}
TY  - JOUR
AU  - A. V. Babin
TI  - An expression for the solution of a differential equation in terms of iterates of differential operators
JO  - Sbornik. Mathematics
PY  - 1978
SP  - 411
EP  - 424
VL  - 34
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1978_34_4_a0/
LA  - en
ID  - SM_1978_34_4_a0
ER  - 
%0 Journal Article
%A A. V. Babin
%T An expression for the solution of a differential equation in terms of iterates of differential operators
%J Sbornik. Mathematics
%D 1978
%P 411-424
%V 34
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1978_34_4_a0/
%G en
%F SM_1978_34_4_a0
A. V. Babin. An expression for the solution of a differential equation in terms of iterates of differential operators. Sbornik. Mathematics, Tome 34 (1978) no. 4, pp. 411-424. http://geodesic.mathdoc.fr/item/SM_1978_34_4_a0/

[1] M. S. Agranovich, “Granichnye zadachi dlya sistem psevdodifferentsialnykh operatorov $1$-go poryadka”, Uspekhi matem. nauk, XXIV:1(145) (1963), 61–125

[2] A. V. Babin, “Formula, vyrazhayuschaya reshenie differentsialnogo uravneniya s analiticheskimi koeffitsientami na mnogoobrazii bez kraya cherez dannye zadachi”, Matem. sb., 101(143) (1976), 610–638 | MR | Zbl

[3] M. I. Vishik, “Kraevye zadachi dlya ellipticheskikh uravnenii, vyrozhdayuschikhsya na granitse oblasti”, Matem. sb., 35(77) (1954), 513–568 | Zbl

[4] N. Danford, Dzh. T. Shvarts, Lineinye operatory, t. I (Obschaya teoriya), IL, Moskva, 1962

[5] S. G. Krein, Lineinye differentsialnye uravneniya v banakhovom prostranstve, izd-vo “Nauka”, Moskva, 1967 | MR

[6] S. G. Mikhlin, “Vyrozhdayuschiesya ellipticheskie uravneniya”, Vestnik LGU, 1954, no. 8, 19–48

[7] R. T. Sili, “Stepeni ellipticheskogo operatora”, Matematika, 12:1 (1968), 96–112

[8] G. I. Eskin, “Zadacha Koshi dlya giperbolicheskikh uravnenii v svertkakh”, Matem. sb., 74(116) (1967), 262–297 | MR

[9] A. V. Babin, “Vyrazhenie $A^{-1}$ cherez iteratsii neogranichennogo samosopryazhennogo operatora $A$ na analiticheskikh vektorakh”, Funkts. analiz, 11:4 (1977), 3–5 | MR | Zbl