A~periodicity theorem in the algebra of symbols
Sbornik. Mathematics, Tome 34 (1978) no. 3, pp. 382-410

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the concept of an elliptic family on the manifold $M$ in a trace algebra. We define the Chern character of an elliptic family. We also introduce the algebra of formal symbols on $\mathbf R^n$ with coefficients in a trace algebra. We establish a connection between the Chern characters of an elliptic family on $M$ in the algebra of formal symbols on $\mathbf R^n$ and of the elliptic family on $M\times\mathbf R^{2n}$ formed by the leading terms of the symbols. Bibliography: 8 titles.
@article{SM_1978_34_3_a6,
     author = {B. V. Fedosov},
     title = {A~periodicity theorem in the algebra of symbols},
     journal = {Sbornik. Mathematics},
     pages = {382--410},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_3_a6/}
}
TY  - JOUR
AU  - B. V. Fedosov
TI  - A~periodicity theorem in the algebra of symbols
JO  - Sbornik. Mathematics
PY  - 1978
SP  - 382
EP  - 410
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1978_34_3_a6/
LA  - en
ID  - SM_1978_34_3_a6
ER  - 
%0 Journal Article
%A B. V. Fedosov
%T A~periodicity theorem in the algebra of symbols
%J Sbornik. Mathematics
%D 1978
%P 382-410
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1978_34_3_a6/
%G en
%F SM_1978_34_3_a6
B. V. Fedosov. A~periodicity theorem in the algebra of symbols. Sbornik. Mathematics, Tome 34 (1978) no. 3, pp. 382-410. http://geodesic.mathdoc.fr/item/SM_1978_34_3_a6/