On weak and $\omega$-high purity in the category of modules
Sbornik. Mathematics, Tome 34 (1978) no. 3, pp. 345-356 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the category of right unitary modules over the associative ring $R$ with $1$, one can define weak $\frak F$ purity, where $\frak F$ is the set of right ideals of $R$ satisfying certain conditions. This is a generalization of the concept of neatness in Abelian group theory. Using the properties of weak $\frak F$-purity, several classes of rings can be characterized. Moreover, an affirmative answer can be given to question 18 [question 14 in the English translation] of A. P. Mishina and L. A. Skornyakov's book “Abelian groups and modules”, which deals with properties of $\omega$-high purity. Groups of weakly $\frak F$-pure and $\omega$-high extensions are studied. Bibliography: 15 titles.
@article{SM_1978_34_3_a3,
     author = {A. I. Generalov},
     title = {On weak and $\omega$-high purity in the category of modules},
     journal = {Sbornik. Mathematics},
     pages = {345--356},
     year = {1978},
     volume = {34},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_3_a3/}
}
TY  - JOUR
AU  - A. I. Generalov
TI  - On weak and $\omega$-high purity in the category of modules
JO  - Sbornik. Mathematics
PY  - 1978
SP  - 345
EP  - 356
VL  - 34
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1978_34_3_a3/
LA  - en
ID  - SM_1978_34_3_a3
ER  - 
%0 Journal Article
%A A. I. Generalov
%T On weak and $\omega$-high purity in the category of modules
%J Sbornik. Mathematics
%D 1978
%P 345-356
%V 34
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1978_34_3_a3/
%G en
%F SM_1978_34_3_a3
A. I. Generalov. On weak and $\omega$-high purity in the category of modules. Sbornik. Mathematics, Tome 34 (1978) no. 3, pp. 345-356. http://geodesic.mathdoc.fr/item/SM_1978_34_3_a3/

[1] N. Burbaki, Kommutativnaya algebra, izd-vo “Mir”, Moskva, 1971 | MR

[2] A. I. Generalov, K opredeleniyu chistoty modulei, 11:4 (1972), 375–380 | MR | Zbl

[3] S. Maklein, Gomologiya, izd-vo “Mir”, Moskva, 1966

[4] A. P. Mishina, “Abelevy gruppy”, Itogi nauki. Algebra. Topologiya. Geometriya, 10, VINITI, Moskva, 1972, 5–45

[5] A. P. Mishina, L. A. Skornyakov, Abelevy gruppy i moduli, izd-vo “Nauka”, Moskva, 1969, (sm. takzhe perevod v Amer. Math. Soc. Transl., ser. 2, 107, 1976) | MR

[6] V. Dlab, “$D$-hodnost Abelovy grupy”, Časop. pěst, mat., 82 (1957), 314–334 | MR | Zbl

[7] J. Fort, “Sommes directes de sous-modules co-irréductibles d'un module”, Séminaire Dubreil–Pisot (20e annee, 1966-67), no. 1, 1968, 3/0-3/21 | Zbl

[8] L. Fuchs, Abelian groups, Budapest, 1966

[9] D. K. Harrison, J. M. Irwin, C. L. Peercy, E. A. Walker, “High extensions of abelian groups”, Acta math. Acad, scient. hung., 14:3-4 (1963), 319–330 | DOI | MR | Zbl

[10] L. Lesieur, R. Croisot, “Coeur d'un module”, J. math, pure et appl., 42:4 (1963)), 367–407 | MR | Zbl

[11] G. Maury, “$\Sigma$-complements d'un module”, C. r. Acad, scient., Paris, 266:4 (1968), A189–A192 | MR

[12] K. M. Rangaswamy, “Characterisation of intersections of neat subgroups of abelian groups”, J. Indian Math. Soc., 29:1/2 (1965), 31–36 | MR | Zbl

[13] G. Renault, “Étude de certains anneaux $A$ liées aux sous-modules compléments d'un module”, C. r. Acad, scient., Paris, 259:23 (1964), A4203–A4205 | MR

[14] D. F. Sanderson, “A generalization of divisibility and injectivity in modules”, Canad. Math. Bull., 8 (1965), 505–513 | MR | Zbl

[15] B. Stenström, “Pure submodules”, Arkiv Mat., 7:2 (1967), 159–171 | DOI | MR | Zbl