On weak and $\omega$-high purity in the category of modules
Sbornik. Mathematics, Tome 34 (1978) no. 3, pp. 345-356

Voir la notice de l'article provenant de la source Math-Net.Ru

In the category of right unitary modules over the associative ring $R$ with $1$, one can define weak $\frak F$ purity, where $\frak F$ is the set of right ideals of $R$ satisfying certain conditions. This is a generalization of the concept of neatness in Abelian group theory. Using the properties of weak $\frak F$-purity, several classes of rings can be characterized. Moreover, an affirmative answer can be given to question 18 [question 14 in the English translation] of A. P. Mishina and L. A. Skornyakov's book “Abelian groups and modules”, which deals with properties of $\omega$-high purity. Groups of weakly $\frak F$-pure and $\omega$-high extensions are studied. Bibliography: 15 titles.
@article{SM_1978_34_3_a3,
     author = {A. I. Generalov},
     title = {On weak and $\omega$-high purity in the category of modules},
     journal = {Sbornik. Mathematics},
     pages = {345--356},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_3_a3/}
}
TY  - JOUR
AU  - A. I. Generalov
TI  - On weak and $\omega$-high purity in the category of modules
JO  - Sbornik. Mathematics
PY  - 1978
SP  - 345
EP  - 356
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1978_34_3_a3/
LA  - en
ID  - SM_1978_34_3_a3
ER  - 
%0 Journal Article
%A A. I. Generalov
%T On weak and $\omega$-high purity in the category of modules
%J Sbornik. Mathematics
%D 1978
%P 345-356
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1978_34_3_a3/
%G en
%F SM_1978_34_3_a3
A. I. Generalov. On weak and $\omega$-high purity in the category of modules. Sbornik. Mathematics, Tome 34 (1978) no. 3, pp. 345-356. http://geodesic.mathdoc.fr/item/SM_1978_34_3_a3/