Estimates of the spectra and the invertibility of functional operators
Sbornik. Mathematics, Tome 34 (1978) no. 2, pp. 243-258 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For an $\mathfrak R$-valued function $f(z_1,\dots,z_n)$ ($\mathfrak R$ is a Banach algebra) that is holomorphic in a neighborhood $\Omega$ of the joint spectrum of $n$ elements $B_1,\dots,B_n\in\mathfrak R$ that commute with each other and with $f(z_1,\dots,z_n)$ $\forall\,z=(z_1,\dots,z_n)\in\Omega$, the function $f(B_1,\dots,B_n)$ is introduced and estimates of the spectrum $\sigma(f(B_1,\dots,B_n))$ are given, one of which generalizes the maximum principle for holomorphic functions. The estimates of $\sigma(f(B_1,\dots,B_n))$ are used to solve problems on the invertibility of transformers, operators induced by discrete systems and operators induced by linear differential equations with constant deviations of the argument. Bibliography: 11 titles.
@article{SM_1978_34_2_a7,
     author = {V. E. Slyusarchuk},
     title = {Estimates of the spectra and the invertibility of functional operators},
     journal = {Sbornik. Mathematics},
     pages = {243--258},
     year = {1978},
     volume = {34},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_2_a7/}
}
TY  - JOUR
AU  - V. E. Slyusarchuk
TI  - Estimates of the spectra and the invertibility of functional operators
JO  - Sbornik. Mathematics
PY  - 1978
SP  - 243
EP  - 258
VL  - 34
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1978_34_2_a7/
LA  - en
ID  - SM_1978_34_2_a7
ER  - 
%0 Journal Article
%A V. E. Slyusarchuk
%T Estimates of the spectra and the invertibility of functional operators
%J Sbornik. Mathematics
%D 1978
%P 243-258
%V 34
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1978_34_2_a7/
%G en
%F SM_1978_34_2_a7
V. E. Slyusarchuk. Estimates of the spectra and the invertibility of functional operators. Sbornik. Mathematics, Tome 34 (1978) no. 2, pp. 243-258. http://geodesic.mathdoc.fr/item/SM_1978_34_2_a7/

[1] M. A. Naimark, Normirovannye koltsa, izd-vo “Nauka”, Moskva, 1968 | MR

[2] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, izd-vo “Nauka”, Moskva, 1970 | MR

[3] V. E. Slyusarchuk, “Dostatochnye usloviya absolyutnoi asimptoticheskoi ustoichivosti lineinykh differentsialnykh uravnenii v banakhovom prostranstve s konechnym i beskonechnym chislom zapazdyvanii”, Tezisy dokladov IV Respublikanskoi konferentsii matematikov Belorussii, chast 2, Minsk, 1975, 130

[4] L. Khermander, Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, izd-vo “Mir”, Moskva, 1968 | MR

[5] M. G. Krein, Lektsii po teorii ustoichivosti reshenii differentsialnykh uravnenii v banakhovom prostranstve, Kiev, 1964 | MR | Zbl

[6] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, izd-vo “Nauka”, Moskva, 1968 | MR

[7] V. E. Slyusarchuk, “Ob ogranichennykh i pochti periodicheskikh resheniyakh neyavnykh raznostnykh uravnenii v banakhovom prostranstve”, DAN USSR, seriya A, 1975, no. 6, 503–509

[8] V. E. Slyusarchuk, “Ogranichennye i pochti periodicheskie resheniya raznostnykh uravnenii v banakhovom prostranstve”, Analiticheskie metody issledovaniya reshenii nelineinykh differentsialnykh uravnenii, izd-vo in-ta matem. AN USSR, Kiev, 1975, 147–156

[9] V. E. Slyusarchuk, Raznostnye uravneniya v funktsionalnykh prostranstvakh, Dopolnenie 2 monografii D. I. Martynyuka “Lektsii po kachestvennoi teorii raznostnykh uravnenii”, “Naukova dumka”, Kiev, 1972

[10] V. E. Slyusarchuk, “Dostatochnye usloviya absolyutnoi asimptoticheskoi ustoichivosti lineinykh uravnenii v banakhovom prostranstve”, Matem. zametki, 17:6 (1975), 919–923 | MR | Zbl

[11] V. E. Slyusarchuk, “Absolyutnaya asimptoticheskaya ustoichivost lineinykh differentsialnykh uravnenii s beskonechnym chislom zapazdyvanii v banakhovom prostranstve”, Diff. uravneniya, XII:5 (1976), 840–847