Cohomological triviality of bimodules over Frobenius algebras
Sbornik. Mathematics, Tome 34 (1978) no. 2, pp. 235-241
Voir la notice de l'article provenant de la source Math-Net.Ru
The structure of Frobenius $Z_p$-algebras with disjointness condition is studied. When $p=2$ an analogue of Nakayama's theorem on cohomological triviality is proved for suitable algebras whose radical squared is zero. When $p\ne2$, cohomological triviality in all dimensions will not generally be implied by the vanishing of cohomology in a single dimension, but will follow from the vanishing in two successive dimensions.
Bibliography: 9 titles.
@article{SM_1978_34_2_a6,
author = {F. R. Bobovich},
title = {Cohomological triviality of bimodules over {Frobenius} algebras},
journal = {Sbornik. Mathematics},
pages = {235--241},
publisher = {mathdoc},
volume = {34},
number = {2},
year = {1978},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1978_34_2_a6/}
}
F. R. Bobovich. Cohomological triviality of bimodules over Frobenius algebras. Sbornik. Mathematics, Tome 34 (1978) no. 2, pp. 235-241. http://geodesic.mathdoc.fr/item/SM_1978_34_2_a6/