Some bases in spaces of regular functions and their application to interpolation
Sbornik. Mathematics, Tome 34 (1978) no. 2, pp. 215-234 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Systems of functions $\{\underset tL{}_n[\Phi(tz)]\}_0^\infty$ are considered, where $\Phi(z)=\sum_0^\infty a_nz^n$ ($a_n\ne0$, $n=0,1,\dots$) is an entire function, $$ L_n[F]=\frac{n!}{2\pi i}\int_{|z|=r_n>\max\limits_{0\leqslant k\leqslant n}|\lambda_{k,n}|}\frac{F(z)\,dz}{(z-\lambda_{0,n})\cdots (z-\lambda_{n,n})}\qquad(n=0,1,\dots), $$ and the matrix $(\lambda_{k,n})$, $k=0,1,\dots,n$, $n=0,1,\dots$, is given. Under various assumptions on the matrix, theorems are proved which deal with the question of whether the systems $\{\underset tL{}_n[\Phi(tz)]\}_0^\infty$ form a basis in the spaces $A(|z|. They are conclusive in the sense that they cannot be improved without changing the hypotheses. The basis theorems are applied to Gel'fond and Abel–Goncharov interpolation problems, which makes it possible to study the distribution of zeros of sequences of derivatives of certain classes of entire functions. Bibliography: 16 titles.
@article{SM_1978_34_2_a5,
     author = {V. A. Oskolkov},
     title = {Some bases in spaces of regular functions and their application to interpolation},
     journal = {Sbornik. Mathematics},
     pages = {215--234},
     year = {1978},
     volume = {34},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_2_a5/}
}
TY  - JOUR
AU  - V. A. Oskolkov
TI  - Some bases in spaces of regular functions and their application to interpolation
JO  - Sbornik. Mathematics
PY  - 1978
SP  - 215
EP  - 234
VL  - 34
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1978_34_2_a5/
LA  - en
ID  - SM_1978_34_2_a5
ER  - 
%0 Journal Article
%A V. A. Oskolkov
%T Some bases in spaces of regular functions and their application to interpolation
%J Sbornik. Mathematics
%D 1978
%P 215-234
%V 34
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1978_34_2_a5/
%G en
%F SM_1978_34_2_a5
V. A. Oskolkov. Some bases in spaces of regular functions and their application to interpolation. Sbornik. Mathematics, Tome 34 (1978) no. 2, pp. 215-234. http://geodesic.mathdoc.fr/item/SM_1978_34_2_a5/

[1] M. A. Evgrafov, Interpolyatsionnaya zadacha Abelya–Goncharova, Gostekhizdat, Moskva, 1954

[2] M. A. Evgrafov, Obobschennoe preobrazovanie Borelya, IPM, preprint No 35, 1976

[3] A. O. Gelfond, Ischislenie konechnykh raznostei, Gostekhizdat, Moskva–Leningrad, 1952 | MR

[4] A. O. Gelfond, “Ob odnoi interpolyatsionnoi zadache”, DAN SSSR, 84:3 (1952), 429–432 | MR

[5] V. A. Oskolkov, “O predstavlenii tselykh funktsii nekotorymi interpolyatsionnymi ryadami”, Tezisy dokladov Vsesoyuznogo simpoziuma po teorii approksimatsii funktsii v kompleksnoi oblasti, 1976, 65–66

[6] A. I. Markushevich, “O bazise v prostranstve analiticheskikh funktsii”, Matem. sb., 17(59) (1945), 211–252 | Zbl

[7] M. A. Evgrafov, Osnovnye ponyatiya interpolyatsii tselykh funktsii, IPM, preprint No 20, 1975

[8] M. A. Evgrafov, Metod blizkikh sistem v prostranstve analiticheskikh funktsii i ego primeneniya k interpolyatsii, Trudy Mosk. matem. ob-va, V, 1956 | MR

[9] V. L. Goncharov, “Interpolyatsionnye protsessy i tselye funktsii”, Uspekhi matem. nauk, III (1937), 113–143

[10] S. S. Macyntyre, “An upper bound for the Whittaker constant”, London Math. Soc. J., 22 (1947), 305–311 | DOI | MR

[11] S. S. Macyntyre, “On the zeros of successive derivatives of integral functions”, Trans. Amer. Math. Soc, 67:1 (1949), 241–251 | DOI | MR

[12] M. G. Khaplanov, “Matrichnyi priznak bazisa v prostranstve analiticheskikh funktsii”, DAN SSSR, 80:2 (1951), 17–18

[13] A. O. Gelfond, “Problema predstavleniya i edinstvennosti tseloi analiticheskoi funktsii pervogo poryadka”, Uspekhi matem. nauk, 1937, no. III, 144–174

[14] M. M. Dragilev, V. P. Zakharyuta, Yu. F. Korobeinik, “Dvoistvennaya svyaz mezhdu nekotorymi voprosami teorii bazisa i interpolyatsii”, DAN SSSR, 215:3 (1974), 522–525 | MR | Zbl

[15] Yu. F. Korobeinik, “Ob odnoi dvoistvennoi zadache. I. Obschie rezultaty. Prilozheniya k prostranstvam Freshe”, Matem. sb., 97(139) (1975), 193–229 | MR | Zbl

[16] Yu. F. Korobeinik, “Ob odnoi dvoistvennoi zadache. II. Prilozheniya k $LN^*$-prostranstvam i drugie voprosy”, Matem. sb., 98(140) (1975), 3–26 | MR | Zbl