Pure and finitely presentable modules, duality homomorphisms and the coherence property of a ring
Sbornik. Mathematics, Tome 34 (1978) no. 2, pp. 173-186 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The homological properties of pure modules are considered, showing, in particular, that for coherent rings the pure modules occupy roughly the same position with respect to injective modules as the flat with respect to projective (for arbitrary rings). The duality homomorphisms $\operatorname{Tor}_p(A^*,F)\to\operatorname{Ext}^p(F,A)^*$ are examined in situations where they are not isomorphisms; dependence of the structure of these homomorphisms on the finite presentability or the purity of the modules $F$ and $A$, as well as on the coherence of the base ring, is studied. Characterizations of pure and flat modules in terms of duality, and characterizations of coherence, semihereditariness and noetherianness in terms of duality, purity and finite presentability are given. Bibliography: 21 titles.
@article{SM_1978_34_2_a3,
     author = {E. G. Sklyarenko},
     title = {Pure and finitely presentable modules, duality homomorphisms and the coherence property of a~ring},
     journal = {Sbornik. Mathematics},
     pages = {173--186},
     year = {1978},
     volume = {34},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_2_a3/}
}
TY  - JOUR
AU  - E. G. Sklyarenko
TI  - Pure and finitely presentable modules, duality homomorphisms and the coherence property of a ring
JO  - Sbornik. Mathematics
PY  - 1978
SP  - 173
EP  - 186
VL  - 34
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1978_34_2_a3/
LA  - en
ID  - SM_1978_34_2_a3
ER  - 
%0 Journal Article
%A E. G. Sklyarenko
%T Pure and finitely presentable modules, duality homomorphisms and the coherence property of a ring
%J Sbornik. Mathematics
%D 1978
%P 173-186
%V 34
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1978_34_2_a3/
%G en
%F SM_1978_34_2_a3
E. G. Sklyarenko. Pure and finitely presentable modules, duality homomorphisms and the coherence property of a ring. Sbornik. Mathematics, Tome 34 (1978) no. 2, pp. 173-186. http://geodesic.mathdoc.fr/item/SM_1978_34_2_a3/

[1] N. Burbaki, Kommutativnaya algebra, izd-vo “Mir”, Moskva, 1971 | MR

[2] R. Godeman, Algebraicheskaya topologiya i teoriya puchkov, IL, Moskva, 1961

[3] A. Kartan, S. Eilenberg, Gomologicheskaya algebra, IL, Moskva, 1960

[4] I. Lambek, Koltsa i moduli, izd-vo “Mir”, Moskva, 1971 | MR

[5] S. Maklein, Gomologiya, izd-vo “Mir”, Moskva, 1966

[6] A. P. Mishina, L. A. Skornyakov, Abelevy gruppy i moduli, izd-vo “Nauka”, Moskva, 1969 | MR

[7] S. U. Chase, “Direct products of modules”, Trans. Amer. Math. Soc., 97:3 (1960), 457–473 | DOI | MR

[8] D. J. Fieldhouse, “Character modules”, Comm. Math. Helv., 46:2 (1971), 274–276 | DOI | MR | Zbl

[9] D. J. Fieldhouse, “Character modules, dimension and purity”, Glasgow Math. J., 13:2 (1972), 144–146 | DOI | MR | Zbl

[10] R. N. Gupta, “On $f$-injective modules and semi-hereditary rings”, Proc Nat. Inst. Sci. India, A, 35:2 (1969), 323–328 | MR | Zbl

[11] T. Ishikawa, “On injective modules and flat modules”, J. Math. Soc. Japan, 17:3 (1965), 291–296 | MR | Zbl

[12] T. Józefiak, “On derived functors of $\otimes$ and Hom”, Bull. Acad. Polon. Sci., 17:2 (1969), 61–62 | MR

[13] B. H. Maddox, Absolutely pure modules, Doct. dissert., Northwest Univ., 1965, Dissert, Abstr., 25, no. 11, 1965

[14] B. H. Maddox, “Absolutely pure modules”, Proc Amer. Math. Soc., 18:1 (1967), 155–158 | DOI | MR | Zbl

[15] D. G. Mcrae, “Homological dimensions of finitely presented modules”, Math. Scand., 28:1 (1971), 70–76 | MR | Zbl

[16] E. Matlis, “Injective modules over noetherian rings”, Pacific J. Math., 8 (1958), 511–528 | MR | Zbl

[17] E. Matlis, “Applications of duality”, Proc Amer. Math. Soc., 10:4 (1959), 659–662 | DOI | MR | Zbl

[18] Ch. Megibben, “Absolutely pure modules”, Proc Amer. Math. Soc., 26:4 (1970), 561–566 | DOI | MR | Zbl

[19] G. Sabbagh, “Sous-modules purs, existentiellement clos et élémentaires”, C. r. Acad, scient., 272:20 (1971), A1289–A1292 | MR

[20] B. Stenstrom, “Coherent rings and $FP$-injective modules”, J. London Math. Soc., 2:2 (1970), 323–329 | DOI | MR

[21] R. T. Shannon, “The rank of a flat module”, Proc. Amer. Math. Soc., 24:3 (1970), 452–456 | DOI | MR | Zbl