Pure and finitely presentable modules, duality homomorphisms and the coherence property of a~ring
Sbornik. Mathematics, Tome 34 (1978) no. 2, pp. 173-186
Voir la notice de l'article provenant de la source Math-Net.Ru
The homological properties of pure modules are considered, showing, in particular, that for coherent rings the pure modules occupy roughly the same position with respect to injective modules as the flat with respect to projective (for arbitrary rings). The duality homomorphisms
$\operatorname{Tor}_p(A^*,F)\to\operatorname{Ext}^p(F,A)^*$ are examined in situations where they are not isomorphisms; dependence of the structure of these homomorphisms on the finite presentability or the purity of the modules $F$ and $A$, as well as on the coherence of the base ring, is studied. Characterizations of pure and flat modules in terms of duality, and characterizations of coherence, semihereditariness and noetherianness in terms of duality, purity and finite presentability are given.
Bibliography: 21 titles.
@article{SM_1978_34_2_a3,
author = {E. G. Sklyarenko},
title = {Pure and finitely presentable modules, duality homomorphisms and the coherence property of a~ring},
journal = {Sbornik. Mathematics},
pages = {173--186},
publisher = {mathdoc},
volume = {34},
number = {2},
year = {1978},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1978_34_2_a3/}
}
TY - JOUR AU - E. G. Sklyarenko TI - Pure and finitely presentable modules, duality homomorphisms and the coherence property of a~ring JO - Sbornik. Mathematics PY - 1978 SP - 173 EP - 186 VL - 34 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1978_34_2_a3/ LA - en ID - SM_1978_34_2_a3 ER -
E. G. Sklyarenko. Pure and finitely presentable modules, duality homomorphisms and the coherence property of a~ring. Sbornik. Mathematics, Tome 34 (1978) no. 2, pp. 173-186. http://geodesic.mathdoc.fr/item/SM_1978_34_2_a3/