Some properties of the normal image of convex functions
Sbornik. Mathematics, Tome 34 (1978) no. 2, pp. 161-171
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $z$ be a convex function defined in a convex domain $D$ of a finite-dimensional Euclidean space. Denote by $z^{(n)}$ the convolutions of $z$ with elements of a $\delta$-type sequence of test functions and let $\nu_z$ and $\nu_{z^{(n)}}$ be the measures of normal images corresponding to $z$ and $z^{(n)}$. One of the main results of this work is that $\nu_{z^{(n)}}\to\nu_z$ in variation on a compact $K\subset D$ if and only if $\nu_z$ is absolutely continuous on $K$ with respect to Lebesgue measure.
Bibliography: 7 titles.
@article{SM_1978_34_2_a2, author = {N. V. Krylov}, title = {Some properties of the normal image of convex functions}, journal = {Sbornik. Mathematics}, pages = {161--171}, publisher = {mathdoc}, volume = {34}, number = {2}, year = {1978}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SM_1978_34_2_a2/} }
N. V. Krylov. Some properties of the normal image of convex functions. Sbornik. Mathematics, Tome 34 (1978) no. 2, pp. 161-171. http://geodesic.mathdoc.fr/item/SM_1978_34_2_a2/