Some properties of the normal image of convex functions
Sbornik. Mathematics, Tome 34 (1978) no. 2, pp. 161-171

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $z$ be a convex function defined in a convex domain $D$ of a finite-dimensional Euclidean space. Denote by $z^{(n)}$ the convolutions of $z$ with elements of a $\delta$-type sequence of test functions and let $\nu_z$ and $\nu_{z^{(n)}}$ be the measures of normal images corresponding to $z$ and $z^{(n)}$. One of the main results of this work is that $\nu_{z^{(n)}}\to\nu_z$ in variation on a compact $K\subset D$ if and only if $\nu_z$ is absolutely continuous on $K$ with respect to Lebesgue measure. Bibliography: 7 titles.
@article{SM_1978_34_2_a2,
     author = {N. V. Krylov},
     title = {Some properties of the normal image of convex functions},
     journal = {Sbornik. Mathematics},
     pages = {161--171},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_2_a2/}
}
TY  - JOUR
AU  - N. V. Krylov
TI  - Some properties of the normal image of convex functions
JO  - Sbornik. Mathematics
PY  - 1978
SP  - 161
EP  - 171
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1978_34_2_a2/
LA  - en
ID  - SM_1978_34_2_a2
ER  - 
%0 Journal Article
%A N. V. Krylov
%T Some properties of the normal image of convex functions
%J Sbornik. Mathematics
%D 1978
%P 161-171
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1978_34_2_a2/
%G en
%F SM_1978_34_2_a2
N. V. Krylov. Some properties of the normal image of convex functions. Sbornik. Mathematics, Tome 34 (1978) no. 2, pp. 161-171. http://geodesic.mathdoc.fr/item/SM_1978_34_2_a2/