On the normal form of nonlinear partial differential equations on the real axis
Sbornik. Mathematics, Tome 34 (1978) no. 1, pp. 111-117
Cet article a éte moissonné depuis la source Math-Net.Ru
The nonlinear equation \begin{equation} i\frac{du}{dt}=(\alpha-\beta i)u_{xx}+\gamma u+\sum_{k=2}^\infty\varphi_ku^k \end{equation} on the real axis is reduced (for $\alpha$, $\beta$, $\gamma$ real, $\beta\ne0$, $\gamma\ne 0$) by a differentiable change of variables in a neighborhoodd of zero of the Banach space $U$ to the linear equation \begin{equation} i\frac{dv}{dt}=(\alpha-i\beta)v_{xx}+\gamma v. \end{equation} Bibliography: 3 titles.
@article{SM_1978_34_1_a4,
author = {V. I. Sedenko},
title = {On the normal form of nonlinear partial differential equations on the real axis},
journal = {Sbornik. Mathematics},
pages = {111--117},
year = {1978},
volume = {34},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1978_34_1_a4/}
}
V. I. Sedenko. On the normal form of nonlinear partial differential equations on the real axis. Sbornik. Mathematics, Tome 34 (1978) no. 1, pp. 111-117. http://geodesic.mathdoc.fr/item/SM_1978_34_1_a4/
[1] B. A. Plise, “O privedenii analiticheskoi sistemy differentsialnykh uravnenii k lineinoi forme”, Diff. uravneniya, 1:2 (1965), 153–161
[2] N. V. Nikolenko, “Polnaya integriruemost nelineinogo uravneniya Shredingera”, DAN SSSR, 227:4 (1976), 235–238 | MR
[3] A. N. Kolmogorov, “O sokhranenii uslovno-periodicheskikh dvizhenii pri malom izmenenii funktsii Gamiltona”, DAN SSSR, 98:4 (1954), 527–530 | MR | Zbl