On the normal form of nonlinear partial differential equations on the real axis
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 34 (1978) no. 1, pp. 111-117
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The nonlinear equation
\begin{equation}
i\frac{du}{dt}=(\alpha-\beta i)u_{xx}+\gamma u+\sum_{k=2}^\infty\varphi_ku^k	
\end{equation}
on the real axis is reduced (for $\alpha$, $\beta$, $\gamma$ real, $\beta\ne0$, 
$\gamma\ne 0$) by a differentiable change of variables in a neighborhoodd of zero of the Banach space $U$ to the linear equation
\begin{equation}
i\frac{dv}{dt}=(\alpha-i\beta)v_{xx}+\gamma v.	
\end{equation} Bibliography: 3 titles.
			
            
            
            
          
        
      @article{SM_1978_34_1_a4,
     author = {V. I. Sedenko},
     title = {On the normal form of nonlinear partial differential equations on the real axis},
     journal = {Sbornik. Mathematics},
     pages = {111--117},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_1_a4/}
}
                      
                      
                    V. I. Sedenko. On the normal form of nonlinear partial differential equations on the real axis. Sbornik. Mathematics, Tome 34 (1978) no. 1, pp. 111-117. http://geodesic.mathdoc.fr/item/SM_1978_34_1_a4/
