On the normal form of nonlinear partial differential equations on the real axis
Sbornik. Mathematics, Tome 34 (1978) no. 1, pp. 111-117

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonlinear equation \begin{equation} i\frac{du}{dt}=(\alpha-\beta i)u_{xx}+\gamma u+\sum_{k=2}^\infty\varphi_ku^k \end{equation} on the real axis is reduced (for $\alpha$, $\beta$, $\gamma$ real, $\beta\ne0$, $\gamma\ne 0$) by a differentiable change of variables in a neighborhoodd of zero of the Banach space $U$ to the linear equation \begin{equation} i\frac{dv}{dt}=(\alpha-i\beta)v_{xx}+\gamma v. \end{equation} Bibliography: 3 titles.
@article{SM_1978_34_1_a4,
     author = {V. I. Sedenko},
     title = {On the normal form of nonlinear partial differential equations on the real axis},
     journal = {Sbornik. Mathematics},
     pages = {111--117},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_1_a4/}
}
TY  - JOUR
AU  - V. I. Sedenko
TI  - On the normal form of nonlinear partial differential equations on the real axis
JO  - Sbornik. Mathematics
PY  - 1978
SP  - 111
EP  - 117
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1978_34_1_a4/
LA  - en
ID  - SM_1978_34_1_a4
ER  - 
%0 Journal Article
%A V. I. Sedenko
%T On the normal form of nonlinear partial differential equations on the real axis
%J Sbornik. Mathematics
%D 1978
%P 111-117
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1978_34_1_a4/
%G en
%F SM_1978_34_1_a4
V. I. Sedenko. On the normal form of nonlinear partial differential equations on the real axis. Sbornik. Mathematics, Tome 34 (1978) no. 1, pp. 111-117. http://geodesic.mathdoc.fr/item/SM_1978_34_1_a4/