The classification of pseudo-Riemannian spaces $V^n$ with poles for~$n\geqslant3$
Sbornik. Mathematics, Tome 34 (1978) no. 1, pp. 25-54

Voir la notice de l'article provenant de la source Math-Net.Ru

The goal of this article is the description of all complete, simply-connected, analytic pseudo-Riemannian spaces $V^n$ of dimension $n\geqslant3$ and index $k$ which contain at least one pole. Recall that a point $p$ in $V^n$ is called a pole if the group of motions of $V^n$ which fix $p$ has dimension $n(n-1)/2$. To each complete space $V^n$ ($n\geqslant3$) with poles there corresponds a class $\chi(V^n)$ of real analytic functions on $\mathbf R$, the characteristic functions for the space $V^n$; the group of affine transformations of the line $\mathbf R$ acts transitively on $\chi(V^n)$. A necessary and sufficient condition is stated for a given real analytic function $a(\tau)$ on $\mathbf R$ to be a characteristic function for an analytic pseudo-Riemannian space $V^n$ ($n\geqslant3$) which contains a pole. A simply-connected space $V^n$ of index $k$ is uniquely determined (up to isometry) by its characteristic function. In the article is an example of a complete, simply-connected, analytic pseudo-Riemannian space $\widetilde V^n_0$ of dimension $n\geqslant3$ and index $k$ for which the set of poles is infinite. It is shown that every complete, simply-connected, analytic pseudo-Riemannian space of dimension $n\geqslant3$ and index $k$ which has poles is conformally equivalent to a region in $\widetilde V^n_0$. Figures: 2. Bibliography: 3 titles.
@article{SM_1978_34_1_a1,
     author = {N. R. Kamyshanskii},
     title = {The classification of {pseudo-Riemannian} spaces $V^n$ with poles for~$n\geqslant3$},
     journal = {Sbornik. Mathematics},
     pages = {25--54},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1978_34_1_a1/}
}
TY  - JOUR
AU  - N. R. Kamyshanskii
TI  - The classification of pseudo-Riemannian spaces $V^n$ with poles for~$n\geqslant3$
JO  - Sbornik. Mathematics
PY  - 1978
SP  - 25
EP  - 54
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1978_34_1_a1/
LA  - en
ID  - SM_1978_34_1_a1
ER  - 
%0 Journal Article
%A N. R. Kamyshanskii
%T The classification of pseudo-Riemannian spaces $V^n$ with poles for~$n\geqslant3$
%J Sbornik. Mathematics
%D 1978
%P 25-54
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1978_34_1_a1/
%G en
%F SM_1978_34_1_a1
N. R. Kamyshanskii. The classification of pseudo-Riemannian spaces $V^n$ with poles for~$n\geqslant3$. Sbornik. Mathematics, Tome 34 (1978) no. 1, pp. 25-54. http://geodesic.mathdoc.fr/item/SM_1978_34_1_a1/