On the summability of Fourier integrals by Riesz spherical means
Sbornik. Mathematics, Tome 33 (1977) no. 4, pp. 501-518 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this report criteria are given for the pointwise summability by Riesz spherical means of order $\delta\in\bigl(\frac{N-3}2,\frac{N-1}2\bigr]$ of $N$-fold Fourier integrals and conjugate integrals. Conjugation is understood in the sense of Calderón and Zygmund. Bibliography: 20 titles.
@article{SM_1977_33_4_a3,
     author = {B. I. Golubov},
     title = {On~the summability of {Fourier} integrals by {Riesz} spherical means},
     journal = {Sbornik. Mathematics},
     pages = {501--518},
     year = {1977},
     volume = {33},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_33_4_a3/}
}
TY  - JOUR
AU  - B. I. Golubov
TI  - On the summability of Fourier integrals by Riesz spherical means
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 501
EP  - 518
VL  - 33
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1977_33_4_a3/
LA  - en
ID  - SM_1977_33_4_a3
ER  - 
%0 Journal Article
%A B. I. Golubov
%T On the summability of Fourier integrals by Riesz spherical means
%J Sbornik. Mathematics
%D 1977
%P 501-518
%V 33
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1977_33_4_a3/
%G en
%F SM_1977_33_4_a3
B. I. Golubov. On the summability of Fourier integrals by Riesz spherical means. Sbornik. Mathematics, Tome 33 (1977) no. 4, pp. 501-518. http://geodesic.mathdoc.fr/item/SM_1977_33_4_a3/

[1] A. Zigmund, Trigonometricheskie ryady, t. 2, izd-vo «Mir», Moskva, 1965 | MR

[2] N. Wiener, “The quadratic variation of a function and its Fourier coefficients”, Massachusetts J. Math., 3 (1924), 72–94 | Zbl

[3] J. Marcinkiewicz, “On a class of functions and their Fourier series”, C. r. scient. Varsovie, 26 (1934), 71–77 | Zbl

[4] L. C. Young, “General inequalities for Stiltijes integrals and the convergence of Fourier series”, Math. Ann., 115:6 (1938), 581–612 | DOI | MR | Zbl

[5] R. Salem, “Essais sur les series trigonometriques”, Actualité scient. Industrielles, 1940, no. 862 | MR

[6] B. I. Golubov, “O skhodimosti sfericheskikh srednikh Rissa kratnykh ryadov Fure”, Matem. sb., 96 (138) (1975), 189–211 | MR | Zbl

[7] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, Moskva, 1961 | MR

[8] A. P. Calderon, A. Ziegmund, “On the existence of certain singular integrals”, Acta Math., 88:1–2 (1952), 85–139 | DOI | MR | Zbl

[9] J. Musielak, W. Orlicz, “On generalized variations, I”, Studia Math., 18:1 (1969), 11–41 | MR

[10] S. Bochner, “Summation of multiple Fourier series by spherical means”, Trans. Amer. Math. Soc., 40:2 (1936), 175–207 | DOI | MR | Zbl

[11] C. P. Chang, On certain exponential sums arising in conjugate multiple Fourier series and integrals, Ph. D. Dissertation, Univ. Chicago, 1964

[12] G. E. Lippman, “Spherical summability of conjugate multiple Fourier series and integrals at the critical index”, SIAM J. Math. Anal., 4:4 (1973), 681–695 | DOI | MR | Zbl

[13] K. I. Oskolkov, “Obobschennaya variatsiya, indikatrisa Banakha i ravnomernaya skhodimost ryadov Fure”, Matem. zametki, 12:3 (1972), 313–324 | MR | Zbl

[14] T. I. Akhobadze, O skhodimosti prostykh i kratnykh ryadov Fure, Kand. dissertatsiya, Tbilisi, 1974

[15] B. I. Golubov, “O skhodimosti sfericheskikh srednikh Rissa kratnykh ryadov i integralov Fure ot funktsii obobschennoi ogranichennoi variatsii”, Matem. sb., 89 (131) (1972), 630–653 | MR | Zbl

[16] K. Chandrasekharan, M. Minakshisundaram, Typical means, Oxford, 1952 | Zbl

[17] E. T. Uitteker, Dzh. Vatson, Kurs sovremennogo analiza, t. II, Fizmatgiz, Moskva, 1963

[18] V. L. Shapiro, “Topics in Fourier and geometric analysis”, Memoirs Amer. Math. Soc., 39 (1961), 1–110 | MR

[19] B. I. Golubov, “O summiruemosti kratnykh integralov Fure srednimi Rissa”, Soobsch. AN Gruz. SSR, 77:3 (1975), 545–552 | MR

[20] B. I. Golubov, “O summiruemosti sopryazhennykh kratnykh integralov Fure srednimi Rissa”, Uspekhi matem. nauk, XXXI:5 (191) (1976), 237–238 | MR