Complete $l$-dimensional surfaces of nonpositive extrinsic curvature in a Riemannian space
Sbornik. Mathematics, Tome 33 (1977) no. 4, pp. 485-499 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article studies complete $l$-dimensional surfaces of nonpositive extrinsic 2-dimensional sectional curvature and nonpositive $k$-dimensional curvature (for $k$ even) in Euclidean space $E^n$, in the sphere $S^n$, in the complex projective space $\mathbf CP^n$, and in a Riemannian space $R^n$. If the embedding codimension is sufficiently small, then a compact surface in $S^n$ or $\mathbf CP^n$ is a totally geodesic great sphere or complex projective space, respectively. If $F^l$ is a compact surface of negative extrinsic 2-dimensional curvature in a Riemannian space $R^{2l-1}$, then there are restrictions on the topological type of the surface. It is shown that a compact Riemannian manifold of nonpositive $k$-dimensional curvature cannot be isometrically immersed as a surface of small codimension. The order of growth of the volume of complete noncompact surfaces of nonpositive $k$-dimensional curvature in Euclidean space is estimated; it is determined when such surfaces are cylinders. A question about surfaces in $S^3$ which are homeomorphic to a sphere and which have nonpositive extrinsic curvature is looked at. Bibliography: 25 titles.
@article{SM_1977_33_4_a2,
     author = {A. A. Borisenko},
     title = {Complete $l$-dimensional surfaces of nonpositive extrinsic curvature in {a~Riemannian} space},
     journal = {Sbornik. Mathematics},
     pages = {485--499},
     year = {1977},
     volume = {33},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_33_4_a2/}
}
TY  - JOUR
AU  - A. A. Borisenko
TI  - Complete $l$-dimensional surfaces of nonpositive extrinsic curvature in a Riemannian space
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 485
EP  - 499
VL  - 33
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1977_33_4_a2/
LA  - en
ID  - SM_1977_33_4_a2
ER  - 
%0 Journal Article
%A A. A. Borisenko
%T Complete $l$-dimensional surfaces of nonpositive extrinsic curvature in a Riemannian space
%J Sbornik. Mathematics
%D 1977
%P 485-499
%V 33
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1977_33_4_a2/
%G en
%F SM_1977_33_4_a2
A. A. Borisenko. Complete $l$-dimensional surfaces of nonpositive extrinsic curvature in a Riemannian space. Sbornik. Mathematics, Tome 33 (1977) no. 4, pp. 485-499. http://geodesic.mathdoc.fr/item/SM_1977_33_4_a2/

[1] J. A. Thorpe, “Sectional curvatures and characteristic classes”, Ann. Math., 80:3 (1964), 429–443 | DOI | MR | Zbl

[2] S. S. Chern, N. H. Kuiper, “Some theorems on the isometric imbedding of compact Riemann manifolds in Euclidean space”, Ann. Math., 56 (1952), 422–430 | DOI | MR

[3] A. A. Borisenko, “O klasse rimanovykh prostranstv strogo otritsatelnoi krivizny”, Ukr. geom. sb., 1973, no. 13, 15–18 | MR | Zbl

[4] T. Otsuki, “On the existense of solutions of quadratic equation and geometrical application”, Proc. Japan. Acad., 29 (1953), 99–100 | DOI | MR | Zbl

[5] A. A. Borisenko, “O polnykh poverkhnostyakh v prostranstvakh postoyannoi krivizny”, Ukr. geom. sb., 1974, no. 15, 8–15 | MR | Zbl

[6] S. Y. Cheng, S. T. Yau, “Differential equations on riemannian manifolds and their geometric applications”, Comm. Pure and Appl. Math., 28:3 (1975), 333–354 | DOI | MR | Zbl

[7] R. Bishop, R. Krittendep, Geometriya mnogoobrazii, izd-vo «Mir», Moskva, 1967 | MR

[8] S. Sternberg, Lektsii po differentsialnoi geometrii, izd-vo «Mir», Moskva, 1970 | MR

[9] A. A. Borisenko, “O stroenii $l$-mernykh poverkhnostei s vyrozhdennoi kvadratichnoi formoi”, Ukr. geom. sb., 1972, no. 13, 18–27 | MR

[10] D. Ferus, “Totally geodesic foliations”, Math. Ann., 188:4 (1970), 313–316 | DOI | MR | Zbl

[11] K. Abe, “A charactherization of totally geodesic submanifolds in $S^n$ and $\mathbf{C}P^n$ an inequality”, Tohoku Math. J., 23:2 (1971), 219–244 | DOI | MR | Zbl

[12] A. A. Borisenko, “O kompaktnykh poverkhnostyakh nepolozhitelnoi vneshnei krivizny v sfericheskom prostranstve”, Ukr. geom. sb., 1976, no. 17, 33–35 | MR

[13] D. Ferus, “Isometrical immersions of constant curvature manifolds”, Math. Ann., 217:2 (1975), 155–156 | DOI | MR | Zbl

[14] A. A. Borisenko, “Ob eilerovoi kharakteristike kompaktnykh poverkhnostei otritsatelnoi vneshnei krivizny v rimanovom lrostranstve”, Ukr. geom. sb., 1975, no. 18, 20–25 | MR | Zbl

[15] A. A. Borisenko, “O kompaktnykh poverkhnostyakh otritsatelnoi vneshnei krivizny v rimanovom prostranstve”, Ukr. geom. sb., 1976, no. 19, 9–11 | MR | Zbl

[16] J. D. Moor, “Isometric immersions of space forms in space forms”, Pacific J. Math., 40:1 (1972), 157–166 | MR | Zbl

[17] S. Kobayashi, K. Nomizu, Foundations of Differential geometry, vol. 1, New York, 1963

[18] H. Lawson, S. Yau, “Compact manifolds nonpositive curvature”, J. Diff. geometry, 7:1–2 (1972), 211–229 | MR

[19] M. P. do Carmo, N. S. Wallach, “Minimal immersions of spheres into spheres”, Ann. Math., 93 (1971), 43–62 | DOI | MR | Zbl

[20] F. J. Almgren, “Some interior regularity theorems for minimal surfaces and of Bernstein's theorem”, Ann. Math., 84 (1966), 277–292 | DOI | MR | Zbl

[21] A. A. Borisenko, “O sedlovykh poverkhnostyakh v sfericheskom prostranstve”, Ukr. geom. sb., 1975, no. 18, 25–27 | MR | Zbl

[22] A. D. Aleksandrov, “O teoremakh edinstvennosti dlya zamknutykh poverkhnostei”, DAN SSSR, 22:3 (1939), 99–102

[23] S. N. Bernshtein, “Usilenie teoremy o poverkhnostyakh otritsatelnoi krivizny”, Sobr. soch., t. 3, izd-vo AN SSSR, Moskva, 1960, 361–368

[24] S. E. Kon-Fossen, Nekotorye voprosy differentsialnoi geometrii v tselom, Fizmatgiz, Moskva, 1959 | MR

[25] A. I. Medyanik, “O tsentralnoi simmetrii zamknutoi strogo vypukloi poverkhnosti”, Ukr. geom. sb., 1966, no. 2, 52–58 | Zbl