On the boundedness of a singular integral operator in the space $C^\alpha(\overline G)$
Sbornik. Mathematics, Tome 33 (1977) no. 4, pp. 447-464 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article considers an operator of the form $$ [Au](x)=\int_G\frac{f(x,s)}{|x-y|^m}u(y)\,dy, $$ where $G$ is a bounded domain in $\mathbf R^m$ with a smooth boundary, $x\in G$, $S\in\Omega$, $\Omega=\{s: s\in\mathbf R^m,|s|=1\}$, $u(y)\in C^\alpha(\overline G)$, $0<\alpha<1$. It is proved that if the function $f(x,s)$ satisfies a Hölder condition with exponent $\lambda$, $\alpha<\lambda<1$, and the condition \begin{equation} \int_{\Omega_1}f(x,s)\,ds=0\qquad x\in G \end{equation} (where $\Omega_1$ is any polysphere), then the operator is bounded from $C^\alpha(\overline G)$ to $C^\alpha(\overline G)$. Moreover, if $f(x,s)=g(s)$, then in order that the operator $A$ should be defined and bounded from $C^\alpha(\overline G)$ to $C^\alpha(\overline G)$ the condition (1) is necessary. Bibliography: 6 titles.
@article{SM_1977_33_4_a0,
     author = {D. S. Anikonov},
     title = {On~the boundedness of a~singular integral operator in the space $C^\alpha(\overline G)$},
     journal = {Sbornik. Mathematics},
     pages = {447--464},
     year = {1977},
     volume = {33},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_33_4_a0/}
}
TY  - JOUR
AU  - D. S. Anikonov
TI  - On the boundedness of a singular integral operator in the space $C^\alpha(\overline G)$
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 447
EP  - 464
VL  - 33
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1977_33_4_a0/
LA  - en
ID  - SM_1977_33_4_a0
ER  - 
%0 Journal Article
%A D. S. Anikonov
%T On the boundedness of a singular integral operator in the space $C^\alpha(\overline G)$
%J Sbornik. Mathematics
%D 1977
%P 447-464
%V 33
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1977_33_4_a0/
%G en
%F SM_1977_33_4_a0
D. S. Anikonov. On the boundedness of a singular integral operator in the space $C^\alpha(\overline G)$. Sbornik. Mathematics, Tome 33 (1977) no. 4, pp. 447-464. http://geodesic.mathdoc.fr/item/SM_1977_33_4_a0/

[1] S. G. Mikhlin, Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, Moskva, 1962 | Zbl

[2] S. Agmon, A. Duglis, L. Nirenberg, Otsenki reshenii ellipticheskikh uravnenii vblizi granitsy, IL, Moskva, 1962

[3] N. M. Gyunter, Teoriya potentsiala i ee primenenie k osnovnym zadacham matematicheskoi fiziki, Gostekhizdat, Moskva, 1963

[4] G. Giraud, Ann. Sci. Ecole Norm. Supér Paris, 49 (1932)

[5] G. E. Shilov, Matematicheskii analiz. Funktsii neskolkikh veschestvennykh peremennykh, izd-vo «Nauka», Moskva, 1972

[6] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, t. 1, izd-vo «Nauka», Moskva, 1958