On optimal algorithms for operator equations of the first kind with a perturbed operator
Sbornik. Mathematics, Tome 33 (1977) no. 2, pp. 281-297 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the optimality of some methods for solving linear operator equations of the first kind with a perturbed operator is investigated, and unimprovable error estimates for these methods in a class of solution are derived. Bibliography: 17 titles.
@article{SM_1977_33_2_a6,
     author = {V. P. Tanana},
     title = {On optimal algorithms for operator equations of the first kind with a~perturbed operator},
     journal = {Sbornik. Mathematics},
     pages = {281--297},
     year = {1977},
     volume = {33},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_33_2_a6/}
}
TY  - JOUR
AU  - V. P. Tanana
TI  - On optimal algorithms for operator equations of the first kind with a perturbed operator
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 281
EP  - 297
VL  - 33
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1977_33_2_a6/
LA  - en
ID  - SM_1977_33_2_a6
ER  - 
%0 Journal Article
%A V. P. Tanana
%T On optimal algorithms for operator equations of the first kind with a perturbed operator
%J Sbornik. Mathematics
%D 1977
%P 281-297
%V 33
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1977_33_2_a6/
%G en
%F SM_1977_33_2_a6
V. P. Tanana. On optimal algorithms for operator equations of the first kind with a perturbed operator. Sbornik. Mathematics, Tome 33 (1977) no. 2, pp. 281-297. http://geodesic.mathdoc.fr/item/SM_1977_33_2_a6/

[1] V. P. Tanana, “Ob odnom optimalnom algoritme dlya operatornykh uravnenii pervogo roda s vozmuschennym operatorom”, DAN SSSR, 226:6 (1976), 1279–1232 | MR

[2] V. P. Tanana, “O metode kvazireshenii i reshenii zadachi optimalnogo upravleniya nagrevom i postroenie optimalnykh algoritmov dlya nekorrektnykh zadach s vozmuschennym operatorom”, Metody resheniya uslovno korrektnykh zadach, UNTs AN SSSR, 1975, 78–89 | MR

[3] V. P. Tanana, “Ob optimalnosti metodov resheniya nelineinykh neustoichivykh zadach”, DAN SSSR, 220:5 (1975), 1035–1037 | MR | Zbl

[4] V. P. Tanana, “Optimalnye po poryadku metody resheniya nelineinykh nekorrektno postavlennykh zadach”, ZhVM i MF, 16:2 (1976), 503–507 | MR | Zbl

[5] A. N. Tikhonov, “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, DAN SSSR, 151:3 (1963), 501–504 | MR | Zbl

[6] A. V. Goncharskii, A. S. Leonov, A. G. Yagola, “Obobschennyi printsip nevyazki”, ZhVM i MF, 13:2 (1973), 294–302

[7] V. K. Ivanov, “O lineinykh nekorrektnykh zadachakh”, DAN SCCP, 145:2 (1962), 270–272 | MR | Zbl

[8] A. V. Goncharskii, A. S. Leonov, A. G. Yagola, “Ob odnom regulyarizuyuschem algoritme dlya nekorrektno postavlennykh zadach s priblizhenno zadannym operatorom”, ZhVM i MF, 12:6 (1972), 1592–1594

[9] V. K. Ivanov, “O nekorrektno postavlennykh zadachakh”, Matem. sb., 61(103) (1963), 211–213

[10] V. K. Ivanov, T. I. Korolyuk, “Ob otsenke pogreshnosti pri reshenii lineinykh nekorrektnykh zadach”, ZhVM i MF, 9:1 (1969), 30–41 | MR | Zbl

[11] M. M. Lavrentev, O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, SO AH SSSR, Novosibirsk, 1962 | MR

[12] E. V. Oshman, “O nepreryvnosti metricheskoi proektsii v prostranstve Banakha”, Matem. sb., 80(122) (1969), 181–194 | Zbl

[13] V. K. Ivanov, “O priblizhennom reshenii operatornykh uravnenii pervogo roda”, ZhVM i MF, 6:6 (1966), 1089–1094 | Zbl

[14] V. V. Vasin, “O svyazi nekotorykh variatsionnykh metodov priblizhennogo resheniya nekorrektnykh zadach”, Matem. zametki, 7:3 (1970), 265–272 | MR | Zbl

[15] V. P. Tanana, “Ob odnom proektsionno-iterativnom algoritme dlya operatornykh uravnenii pervogo roda s priblizhenno zadannym operatorom”, DAN SSSR, 224:5 (1975), 1082–1083 | MR

[16] V. A. Morozov, “O regulyarizuyuschikh semeistvakh operatorov”, Vychislitelnye metody i programmirovanie, no. 8, MGU, M., 1967, 63–95

[17] V. L. Klee, “Convexity of Chebyshev sets”, Math. Ann., 142:3 (1961), 292–304 | DOI | MR | Zbl