On the question of absolute continuity and singularity of probability measures
Sbornik. Mathematics, Tome 33 (1977) no. 2, pp. 203-221
Voir la notice de l'article provenant de la source Math-Net.Ru
The basic result in this paper (Theorem 1) generalizes the well-known criterion of Kakutani to measures corresponding to arbitrary random sequences. The proof is based on Theorem 6, which gives a description of the set of convergence of a submartingale with bounded increments. The question of absolute continuity and singularity of measures corresponding to solutions of stochastic difference equations is studied. The dichotomy for Gaussian measures is obtained as a corollary.
Bibliography: 13 titles.
@article{SM_1977_33_2_a2,
author = {Yu. M. Kabanov and R. Sh. Liptser and A. N. Shiryaev},
title = {On the question of absolute continuity and singularity of probability measures},
journal = {Sbornik. Mathematics},
pages = {203--221},
publisher = {mathdoc},
volume = {33},
number = {2},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1977_33_2_a2/}
}
TY - JOUR AU - Yu. M. Kabanov AU - R. Sh. Liptser AU - A. N. Shiryaev TI - On the question of absolute continuity and singularity of probability measures JO - Sbornik. Mathematics PY - 1977 SP - 203 EP - 221 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1977_33_2_a2/ LA - en ID - SM_1977_33_2_a2 ER -
Yu. M. Kabanov; R. Sh. Liptser; A. N. Shiryaev. On the question of absolute continuity and singularity of probability measures. Sbornik. Mathematics, Tome 33 (1977) no. 2, pp. 203-221. http://geodesic.mathdoc.fr/item/SM_1977_33_2_a2/