On the question of absolute continuity and singularity of probability measures
Sbornik. Mathematics, Tome 33 (1977) no. 2, pp. 203-221 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The basic result in this paper (Theorem 1) generalizes the well-known criterion of Kakutani to measures corresponding to arbitrary random sequences. The proof is based on Theorem 6, which gives a description of the set of convergence of a submartingale with bounded increments. The question of absolute continuity and singularity of measures corresponding to solutions of stochastic difference equations is studied. The dichotomy for Gaussian measures is obtained as a corollary. Bibliography: 13 titles.
@article{SM_1977_33_2_a2,
     author = {Yu. M. Kabanov and R. Sh. Liptser and A. N. Shiryaev},
     title = {On the question of absolute continuity and singularity of probability measures},
     journal = {Sbornik. Mathematics},
     pages = {203--221},
     year = {1977},
     volume = {33},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_33_2_a2/}
}
TY  - JOUR
AU  - Yu. M. Kabanov
AU  - R. Sh. Liptser
AU  - A. N. Shiryaev
TI  - On the question of absolute continuity and singularity of probability measures
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 203
EP  - 221
VL  - 33
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1977_33_2_a2/
LA  - en
ID  - SM_1977_33_2_a2
ER  - 
%0 Journal Article
%A Yu. M. Kabanov
%A R. Sh. Liptser
%A A. N. Shiryaev
%T On the question of absolute continuity and singularity of probability measures
%J Sbornik. Mathematics
%D 1977
%P 203-221
%V 33
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1977_33_2_a2/
%G en
%F SM_1977_33_2_a2
Yu. M. Kabanov; R. Sh. Liptser; A. N. Shiryaev. On the question of absolute continuity and singularity of probability measures. Sbornik. Mathematics, Tome 33 (1977) no. 2, pp. 203-221. http://geodesic.mathdoc.fr/item/SM_1977_33_2_a2/

[1] S. Kakutani, “On equivalence of infinite product measures”, Ann. Math., 49:1 (1948), 214–224 | DOI | MR | Zbl

[2] A. H. Kolmogorov, Osnovnye ponyatiya teorii veroyatnostei, Nauka, M., 1974 | MR

[3] P.-A. Meier, Veroyatnost i potentsialy, Mir, M., 1973

[4] Zh. Neve, Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969 | MR | Zbl

[5] R. Sh. Liptser, A. N. Shiryaev, Statistika sluchainykh protsessov, Nauka, M., 1974 | MR | Zbl

[6] P. Khalmosh, Teoriya mery, IL, M., 1953

[7] I. A. Ibragimov, Yu. A. Rozanov, Gaussovskie sluchainye protsessy, Nauka, M., 1970 | MR

[8] T. T. Kadota, L. A. Shepp, “Conditions for the absolute continuity between a certain pair of probability measures”, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 16:3 (1970), 250–260 | DOI | MR | Zbl

[9] T. T. Kadota, “Nonsingular Detection and Likelihood Ratio for Randon Signals in White Noise”, IEEE Trans. Inform. Theory IT-16, 1970, 291–298 | DOI | MR | Zbl

[10] A. V. Skorokhod, Integrirovanie v gilbertovom prostranstve, Nauka, M., 1975

[11] R. D. LePage, V. Mandrekar, “Equivalence-singularity dichotomies from zero-one laws”, Proc. Amer. Math. Soc., 31:1 (1972), 251–254 | DOI | MR

[12] R. D. LePage, V. Mandrekar, “On likelihood ratios of measures given by Markov chains”, Proc. Amer. Math. Soc., 52 (1975), 377–380 | DOI | MR | Zbl

[13] H. Je Engelbert, A. N. Shiryaev, On absolute continuity and singularity of probability measures, preprint, Banach Center Publications | MR