Carleman estimates for the Schr\"odinger operator with a~locally semibounded strongly singular potential
Sbornik. Mathematics, Tome 33 (1977) no. 1, pp. 147-158

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be an arbitrary selfadjoint extension in $L_2(\mathbf R^n)$, $n\geqslant2$, of the minimal Schrödinger operator with a potential $q(x)\in L_{2,\mathrm{loc}}(\mathbf R^n)$ that is locally bounded from below. For a certain class of functions $\Phi(A,t)$ of $A$ and a parameter $t>0$, which are connected with the hyperbolic equation $u''=Au$, an estimate of the form $$ \bigl|[\Phi(A,t)f](x)\bigr|\leqslant c(x,t)\int_{|y-x|\leqslant t}|f(y)|^2\,dy $$ is obtained for almost all $x\in\mathbf R^n$; here $f\in L_2(\mathbf R)^n$ is a function with compact supportand $c(x,t)$ is explicitly expressed in terms of an arbitrary continuous function $m(x)\geqslant-q(x)$, $x\in\mathbf R^n$. An application of this estimate to the question of pointwise approximation of functions by spectral “wave packets” is considered. Bibliography: 15 titles.
@article{SM_1977_33_1_a8,
     author = {Yu. B. Orochko},
     title = {Carleman estimates for the {Schr\"odinger} operator with a~locally semibounded strongly singular potential},
     journal = {Sbornik. Mathematics},
     pages = {147--158},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_33_1_a8/}
}
TY  - JOUR
AU  - Yu. B. Orochko
TI  - Carleman estimates for the Schr\"odinger operator with a~locally semibounded strongly singular potential
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 147
EP  - 158
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1977_33_1_a8/
LA  - en
ID  - SM_1977_33_1_a8
ER  - 
%0 Journal Article
%A Yu. B. Orochko
%T Carleman estimates for the Schr\"odinger operator with a~locally semibounded strongly singular potential
%J Sbornik. Mathematics
%D 1977
%P 147-158
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1977_33_1_a8/
%G en
%F SM_1977_33_1_a8
Yu. B. Orochko. Carleman estimates for the Schr\"odinger operator with a~locally semibounded strongly singular potential. Sbornik. Mathematics, Tome 33 (1977) no. 1, pp. 147-158. http://geodesic.mathdoc.fr/item/SM_1977_33_1_a8/