Carleman estimates for the Schr\"odinger operator with a~locally semibounded strongly singular potential
Sbornik. Mathematics, Tome 33 (1977) no. 1, pp. 147-158
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A$ be an arbitrary selfadjoint extension in $L_2(\mathbf R^n)$, $n\geqslant2$, of the minimal Schrödinger operator with a potential $q(x)\in L_{2,\mathrm{loc}}(\mathbf R^n)$ that is locally bounded from below. For a certain class of functions $\Phi(A,t)$ of $A$ and a parameter $t>0$, which are connected with the hyperbolic equation $u''=Au$, an estimate of the form
$$
\bigl|[\Phi(A,t)f](x)\bigr|\leqslant c(x,t)\int_{|y-x|\leqslant t}|f(y)|^2\,dy
$$
is obtained for almost all $x\in\mathbf R^n$; here $f\in L_2(\mathbf R)^n$ is a function with compact supportand $c(x,t)$ is explicitly expressed in terms of an arbitrary continuous function $m(x)\geqslant-q(x)$, $x\in\mathbf R^n$. An application of this estimate to the question of pointwise approximation of functions by spectral “wave packets” is considered.
Bibliography: 15 titles.
@article{SM_1977_33_1_a8,
author = {Yu. B. Orochko},
title = {Carleman estimates for the {Schr\"odinger} operator with a~locally semibounded strongly singular potential},
journal = {Sbornik. Mathematics},
pages = {147--158},
publisher = {mathdoc},
volume = {33},
number = {1},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1977_33_1_a8/}
}
TY - JOUR AU - Yu. B. Orochko TI - Carleman estimates for the Schr\"odinger operator with a~locally semibounded strongly singular potential JO - Sbornik. Mathematics PY - 1977 SP - 147 EP - 158 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1977_33_1_a8/ LA - en ID - SM_1977_33_1_a8 ER -
Yu. B. Orochko. Carleman estimates for the Schr\"odinger operator with a~locally semibounded strongly singular potential. Sbornik. Mathematics, Tome 33 (1977) no. 1, pp. 147-158. http://geodesic.mathdoc.fr/item/SM_1977_33_1_a8/