Carleman estimates for the Schrödinger operator with a locally semibounded strongly singular potential
Sbornik. Mathematics, Tome 33 (1977) no. 1, pp. 147-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $A$ be an arbitrary selfadjoint extension in $L_2(\mathbf R^n)$, $n\geqslant2$, of the minimal Schrödinger operator with a potential $q(x)\in L_{2,\mathrm{loc}}(\mathbf R^n)$ that is locally bounded from below. For a certain class of functions $\Phi(A,t)$ of $A$ and a parameter $t>0$, which are connected with the hyperbolic equation $u''=Au$, an estimate of the form $$ \bigl|[\Phi(A,t)f](x)\bigr|\leqslant c(x,t)\int_{|y-x|\leqslant t}|f(y)|^2\,dy $$ is obtained for almost all $x\in\mathbf R^n$; here $f\in L_2(\mathbf R)^n$ is a function with compact supportand $c(x,t)$ is explicitly expressed in terms of an arbitrary continuous function $m(x)\geqslant-q(x)$, $x\in\mathbf R^n$. An application of this estimate to the question of pointwise approximation of functions by spectral “wave packets” is considered. Bibliography: 15 titles.
@article{SM_1977_33_1_a8,
     author = {Yu. B. Orochko},
     title = {Carleman estimates for the {Schr\"odinger} operator with a~locally semibounded strongly singular potential},
     journal = {Sbornik. Mathematics},
     pages = {147--158},
     year = {1977},
     volume = {33},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_33_1_a8/}
}
TY  - JOUR
AU  - Yu. B. Orochko
TI  - Carleman estimates for the Schrödinger operator with a locally semibounded strongly singular potential
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 147
EP  - 158
VL  - 33
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1977_33_1_a8/
LA  - en
ID  - SM_1977_33_1_a8
ER  - 
%0 Journal Article
%A Yu. B. Orochko
%T Carleman estimates for the Schrödinger operator with a locally semibounded strongly singular potential
%J Sbornik. Mathematics
%D 1977
%P 147-158
%V 33
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1977_33_1_a8/
%G en
%F SM_1977_33_1_a8
Yu. B. Orochko. Carleman estimates for the Schrödinger operator with a locally semibounded strongly singular potential. Sbornik. Mathematics, Tome 33 (1977) no. 1, pp. 147-158. http://geodesic.mathdoc.fr/item/SM_1977_33_1_a8/

[1] F. Stummel, “Singuläre elliptische Differentialoperatoren in Hilbertschen Räumen”, Math. Ann., 132:2 (1956), 150–176 | DOI | MR | Zbl

[2] B. Simon, R. Hoegh-Krohn, “Hypercontractive semigroups and two-dimensional selfcoupled Bose fields”, J. Funct. Anal., 9:2 (1972), 121–180 | DOI | MR | Zbl

[3] B. Simon, “Essential self-adjointness of Schrödinger operators with positive potentials”, Math. Ann., 201:3 (1973), 211–220 | DOI | MR | Zbl

[4] T. Kato, “Schrödinger operators with singular potentials”, Isr. J. Math., 13:1–2 (1972), 135–148 | DOI | MR

[5] Yu. B. Orochko, “Zamechanie o suschestvennoi samosopryazhennosti operatora Shredingera s singulyarnym potentsialom”, Matem. zametki, 20:4 (1976), 571–580 | MR | Zbl

[6] Yu. M. Berezanskii, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, izd-vo «Naukova dumka», Kiev, 1965 | MR

[7] Yu. M. Berezanskii, A. G. Geidarov, “Razlozhenie po sobstvennym funktsiyam samosopryazhennykh ellipticheskikh operatorov s singulyarnym potentsialom”, Vsesoyuznaya konferentsiya po uravneniyam s chastnymi proizvodnymi, posvyaschennaya 75-letiyu so dnya rozhdeniya I. G. Petrovskogo, Moskva, 1976, (doklad)

[8] Yu. B. Orochko, “Nekotorye otsenki na beskonechnosti sobstvennykh funktsii operatora Shredingera”, Ukr. matem. zh., 19:3 (1967), 39–52 | MR | Zbl

[9] T. Kato, Teoriya vozmuschenii lineinykh operatorov, izd-vo «Mir», Moskva, 1972

[10] Yu. B. Orochko, “O primenenii spektralnoi teorii dlya polucheniya otsenok reshenii uravneniya Shredingera”, Matem. sb., 93 (135) (1974), 170–188 | Zbl

[11] Yu. B. Orochko, “Dostatochnoe uslovie suschestvennoi samosopryazhennosti mnogochlenov ot operatora Shredingera”, Matem. sb., 99 (141) (1976), 192–210 | Zbl

[12] V. B. Korotkov, “Integralnye predstavleniya lineinykh operatorov”, Sib. matem. zh., 15:3 (1974), 529–545 | MR | Zbl

[13] E. Ch. Titchmarsh, Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, t. 2, IL, Moskva, 1961

[14] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, P. E. Sobolevskii, Integralnye operatory v prostranstvakh summiruemykh funktsii, izd-vo «Nauka», Moskva, 1966 | MR

[15] I. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, izd-vo «Mir», Moskva, 1973 | MR