Conjugate functions and the restricted Denjoy integral
Sbornik. Mathematics, Tome 33 (1977) no. 1, pp. 81-124
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the functions conjugate to Denjoy integrable functions. In particular, it is shown that if $f$ and its conjugate $\overline f$ are integrable in the restricted Denjoy sense then the conjugate series coincides with the Fourier–Denjoy series of the conjugate function, $(D^*)\sigma[\overline f]=(D^*)\overline\sigma [f]$, and the Riesz equation $(D^*)\int_0^{2\pi}\varphi\overline f\,dx=-(D^*)\int_0^{2\pi}f\overline\varphi\,dx$ holds provided that $\varphi$ and its conjugate function $\overline\varphi$ are of bounded variation.
Bibliography: 20 titles.
@article{SM_1977_33_1_a5,
author = {T. P. Lukashenko},
title = {Conjugate functions and the restricted {Denjoy} integral},
journal = {Sbornik. Mathematics},
pages = {81--124},
publisher = {mathdoc},
volume = {33},
number = {1},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1977_33_1_a5/}
}
T. P. Lukashenko. Conjugate functions and the restricted Denjoy integral. Sbornik. Mathematics, Tome 33 (1977) no. 1, pp. 81-124. http://geodesic.mathdoc.fr/item/SM_1977_33_1_a5/