Conjugate functions and the restricted Denjoy integral
Sbornik. Mathematics, Tome 33 (1977) no. 1, pp. 81-124

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the functions conjugate to Denjoy integrable functions. In particular, it is shown that if $f$ and its conjugate $\overline f$ are integrable in the restricted Denjoy sense then the conjugate series coincides with the Fourier–Denjoy series of the conjugate function, $(D^*)\sigma[\overline f]=(D^*)\overline\sigma [f]$, and the Riesz equation $(D^*)\int_0^{2\pi}\varphi\overline f\,dx=-(D^*)\int_0^{2\pi}f\overline\varphi\,dx$ holds provided that $\varphi$ and its conjugate function $\overline\varphi$ are of bounded variation. Bibliography: 20 titles.
@article{SM_1977_33_1_a5,
     author = {T. P. Lukashenko},
     title = {Conjugate functions and the restricted {Denjoy} integral},
     journal = {Sbornik. Mathematics},
     pages = {81--124},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_33_1_a5/}
}
TY  - JOUR
AU  - T. P. Lukashenko
TI  - Conjugate functions and the restricted Denjoy integral
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 81
EP  - 124
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1977_33_1_a5/
LA  - en
ID  - SM_1977_33_1_a5
ER  - 
%0 Journal Article
%A T. P. Lukashenko
%T Conjugate functions and the restricted Denjoy integral
%J Sbornik. Mathematics
%D 1977
%P 81-124
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1977_33_1_a5/
%G en
%F SM_1977_33_1_a5
T. P. Lukashenko. Conjugate functions and the restricted Denjoy integral. Sbornik. Mathematics, Tome 33 (1977) no. 1, pp. 81-124. http://geodesic.mathdoc.fr/item/SM_1977_33_1_a5/