Symmetric squares of zeta-functions for the principal congruence subgroup of the Siegel group of genus~2
Sbornik. Mathematics, Tome 33 (1977) no. 1, pp. 19-36
Voir la notice de l'article provenant de la source Math-Net.Ru
Symmetric squares of zeta-functions are introduced for modular forms for the principal congruence subgroup of the integral symplectic group of genus 2. A connection is established between the symmetric squares and Dirichlet series constructed from the Fourier coefficients of modular forms, and an integral representation is obtained.
Bibliography: 9 titles.
@article{SM_1977_33_1_a1,
author = {V. A. Gritsenko},
title = {Symmetric squares of zeta-functions for the principal congruence subgroup of the {Siegel} group of genus~2},
journal = {Sbornik. Mathematics},
pages = {19--36},
publisher = {mathdoc},
volume = {33},
number = {1},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1977_33_1_a1/}
}
TY - JOUR AU - V. A. Gritsenko TI - Symmetric squares of zeta-functions for the principal congruence subgroup of the Siegel group of genus~2 JO - Sbornik. Mathematics PY - 1977 SP - 19 EP - 36 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1977_33_1_a1/ LA - en ID - SM_1977_33_1_a1 ER -
V. A. Gritsenko. Symmetric squares of zeta-functions for the principal congruence subgroup of the Siegel group of genus~2. Sbornik. Mathematics, Tome 33 (1977) no. 1, pp. 19-36. http://geodesic.mathdoc.fr/item/SM_1977_33_1_a1/