A theorem on the convergence almost everywhere of a sequence of measurable functions, and its applications to sequences of stochastic integrals
Sbornik. Mathematics, Tome 33 (1977) no. 1, pp. 1-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that various problems on the convergence almost everywhere of sequences of stochastic integrals (the theorem of Kotel'nikov for stationary processes, estimates of the means of stationary processes and homogeneous fields) can be solved with the help of a general theorem on convergence of a sequence of measurable functions. Bibliography: 9 titles.
@article{SM_1977_33_1_a0,
     author = {V. F. Gaposhkin},
     title = {A~theorem on the convergence almost everywhere of a~sequence of measurable functions, and its applications to sequences of stochastic integrals},
     journal = {Sbornik. Mathematics},
     pages = {1--17},
     year = {1977},
     volume = {33},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_33_1_a0/}
}
TY  - JOUR
AU  - V. F. Gaposhkin
TI  - A theorem on the convergence almost everywhere of a sequence of measurable functions, and its applications to sequences of stochastic integrals
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 1
EP  - 17
VL  - 33
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1977_33_1_a0/
LA  - en
ID  - SM_1977_33_1_a0
ER  - 
%0 Journal Article
%A V. F. Gaposhkin
%T A theorem on the convergence almost everywhere of a sequence of measurable functions, and its applications to sequences of stochastic integrals
%J Sbornik. Mathematics
%D 1977
%P 1-17
%V 33
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1977_33_1_a0/
%G en
%F SM_1977_33_1_a0
V. F. Gaposhkin. A theorem on the convergence almost everywhere of a sequence of measurable functions, and its applications to sequences of stochastic integrals. Sbornik. Mathematics, Tome 33 (1977) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/SM_1977_33_1_a0/

[1] V. F. Gaposhkin, “Kriterii usilennogo zakona bolshikh chisel dlya klassov statsionarnykh protsessov i odnorodnykh sluchainykh polei”, DAN SSSR, 223:5 (1975), 1044–1047 | MR | Zbl

[2] Yu. K. Belyaev, “Analiticheskie sluchainye protsessy”, Teoriya veroyatnostei, IV:4 (1959), 437–444 | MR

[3] B. R. Levin, Teoreticheskie osnovy statisticheskoi radiotekhniki, t. 1, «Sov. radio», Moskva, 1974 | Zbl

[4] V. F. Gaposhkin, “Tochnye otsenki skorosti skhodimosti v usilennom zakone bolshikh chisel dlya klassov statsionarnykh v shirokom smysle posledovatelnostei i protsessov”, Uspekhi matem. nauk, XXXI:5 (191) (1976), 233–234

[5] A. Zigmund, Trigonometricheskie ryady, t. 1, Mir, Moskva, 1965

[6] A. M. Yurchenko, “Summirovanie kvaziortogonalnykh posledovatelnostei metodami Chezaro”, Analysis Math., 1:3 (1975), 231–237 | DOI | MR

[7] Z. A. Piranashvili, “K voprosu ob interpolyatsii sluchainykh protsessov”, Teoriya veroyatnostei, XII:4 (1967), 708–717

[8] Yu. A. Rozanov, “Spektralnyi analiz abstraktnykh funktsii”, Teoriya veroyatnostei, IV:3 (1959), 291–310

[9] G. G. Lorentz, “Über die Mittelwerte der Funktionen eines Orthogonalsystems”, Math. Z., 49 (1944), 724–733 | DOI | MR | Zbl