Approximation properties of summable functions on sets of full measure
Sbornik. Mathematics, Tome 32 (1977) no. 4, pp. 489-514 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Estimates are obtained of the rate of approximation almost everywhere as a function of the modulus of continuity of the approximated functions in $L^p$, and of the set from which the approximating functions are chosen. From this point of view the author studies the approximation of functions by Steklov means, partial sums of Fourier–Haar series, arbitrary sequences of polynomials in the Haar and Faber–Schauder systems, and piecewise monotone functions with variable intervals of monotonicity. The estimates of the rate of approximation almost everywhere that are obtained are distinguished from approximation estimates in an integral metric (i.e. from estimates of the type of Jackson's theorem in $L^p$) by unbounded factors depending on the modulus of continuity and the approximating functions. Estimates of the growth of these factors are obtained, and it is established that in a number of cases these estimates are best possible, or almost so. Bibliography: 17 titles.
@article{SM_1977_32_4_a6,
     author = {K. I. Oskolkov},
     title = {Approximation properties of summable functions on sets of full measure},
     journal = {Sbornik. Mathematics},
     pages = {489--514},
     year = {1977},
     volume = {32},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_32_4_a6/}
}
TY  - JOUR
AU  - K. I. Oskolkov
TI  - Approximation properties of summable functions on sets of full measure
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 489
EP  - 514
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1977_32_4_a6/
LA  - en
ID  - SM_1977_32_4_a6
ER  - 
%0 Journal Article
%A K. I. Oskolkov
%T Approximation properties of summable functions on sets of full measure
%J Sbornik. Mathematics
%D 1977
%P 489-514
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1977_32_4_a6/
%G en
%F SM_1977_32_4_a6
K. I. Oskolkov. Approximation properties of summable functions on sets of full measure. Sbornik. Mathematics, Tome 32 (1977) no. 4, pp. 489-514. http://geodesic.mathdoc.fr/item/SM_1977_32_4_a6/

[1] G. Alexits, “Sur l'ordre de grandeur de l'approximation d'une fonction par les moyennes de sa série de Fourier”, Mat. Fiz. Lapok, 48 (1941), 410–422 | MR | Zbl

[2] S. B. Stechkin, “Otsenka ostatka ryada Teilora dlya nekotorykh klassov analiticheskikh funktsii”, Izv. AN SSSR, seriya matem., 17 (1953), 461–472 | Zbl

[3] L. Carleson, “On convergence and growth of partial sums of Fourier series”, Acta Math., 116 (1966), 135–157 | DOI | MR | Zbl

[4] R. A. Hunt, “On convergence of Fourier series”, Orthogonal expansions and their continuous analogues, Proc. Conf. S. Ill. Univ. (Edwardsville, 1967, Illinois), SIU Press, Carbondale, 1968 | MR

[5] K. I. Oskolkov, “Otsenka skorosti priblizheniya nepreryvnoi funktsii i ee sopryazhennoi summami Fure na mnozhestve polnoi mery”, Izv. AN SSSR, seriya matem., 38 (1974), 1393–1407 | MR | Zbl

[6] K. I. Oskolkov, “K neravenstvu Lebega v ravnomernoi metrike i na mnozhestve polnoi mery”, Matem. zametki, 18:4 (1975), 515–526 | MR | Zbl

[7] K. I. Oskolkov, “Ravnomernyi modul nepreryvnosti summiruemykh funktsii na mnozhestvakh polozhitelnoi mery”, DAN SSSR, 229:2 (1976), 304–306 | MR | Zbl

[8] K. I. Oskolkov, “Quantitative estimates of N. N. Luzin's $C$-property for classes of integrable functions”, Proc. of the Semester on Approximation Theory, Banach Center Publications, 1977

[9] T. V. Radoslavova, “Priblizhenie nepreryvnykh funktsii trigonometricheskimi polinomami pochti vsyudu”, Matem. zametki, 19:1 (1976), 49–62 | MR | Zbl

[10] T. V. Radoslavova, “O priblizhenii integriruemykh funktsii lineinymi metodami pochti vsyudu”, Matem. zametki, 18:1 (1975), 77–90 | MR | Zbl

[11] A. A. Gonchar, “Skorost priblizheniya ratsionalnymi drobyami i svoistva funktsii”, Trudy Mezhdunarodnogo kongressa matematikov, izd-vo «Mir», Moskva, 1968, 329–356

[12] E. P. Dolzhenko, “Skorost priblizheniya ratsionalnymi drobyami i svoistva funktsii”, Matem. sb., 56 (98) (1962), 403–432 | Zbl

[13] E. A. Sevastyanov, “O zavisimosti differentsialnykh svoistv funktsii ot skorosti ee ratsionalnykh priblizhenii v metrikakh $L_p$”, Matem. zametki, 15:1 (1974), 79–90 | MR

[14] A. I. Rubinshtein, “Ob $\omega$-lakunarnykh ryadakh i o funktsiyakh klassov $H^\omega$”, Matem. sb., 65(107) (1964), 239–271

[15] A. Zigmund, Trigonometricheskie ryady, t. 1, izd-vo «Mir», Moskva, 1965 | MR

[16] G. Hardy, J. E. Littlewood, “A convergence criterion for Fourier series”, Math. Z., 28:4 (1928), 612–634 | DOI | MR | Zbl

[17] M. Sh. Birman, M. Z. Solomyak, “Kusochno-polinomialnye priblizheniya funktsii klassov $W_p^\alpha$”, Matem. sb., 73 (115) (1967), 331–355 | MR | Zbl