On recursively enumerable minimal btt-degrees
Sbornik. Mathematics, Tome 32 (1977) no. 4, pp. 477-487 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that in the upper semilattice of recursively enumerable btt-degrees, every upper bound of the set of minimal elements coincides with the unit of the semilattice. In any recursively enumerable nonrecursive w-degree there exist sets having minimal m- and btt-degrees. Bibliography: 8 titles.
@article{SM_1977_32_4_a5,
     author = {S. S. Marchenkov},
     title = {On recursively enumerable minimal btt-degrees},
     journal = {Sbornik. Mathematics},
     pages = {477--487},
     year = {1977},
     volume = {32},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_32_4_a5/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - On recursively enumerable minimal btt-degrees
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 477
EP  - 487
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1977_32_4_a5/
LA  - en
ID  - SM_1977_32_4_a5
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T On recursively enumerable minimal btt-degrees
%J Sbornik. Mathematics
%D 1977
%P 477-487
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1977_32_4_a5/
%G en
%F SM_1977_32_4_a5
S. S. Marchenkov. On recursively enumerable minimal btt-degrees. Sbornik. Mathematics, Tome 32 (1977) no. 4, pp. 477-487. http://geodesic.mathdoc.fr/item/SM_1977_32_4_a5/

[1] A. N. Dëgtev, “O $\mathrm{tt}$- i $\mathrm{m}$-stepenyakh”, Algebra i logika, 12:2 (1973), 143–161 | MR | Zbl

[2] Yu. L. Ershov, I. A. Lavrov, “Verkhnyaya polureshetka $L(\gamma)$”, Algebra i logika, 12:2 (1973), 167–189 | MR | Zbl

[3] G. N. Kobzev, “O btt-svodimosti, II”, Algebra i logika, 12:4 (1973), 433–444 | MR | Zbl

[4] G. N. Kobzev, “O r-otdelimykh mnozhestvakh”, Issledovaniya po matematicheskoi logike i teorii algoritmov, Tbilisskii universitet, 1975, 19–30 | MR

[5] S. S. Marchenkov, “K sravneniyu verkhnikh polureshetok rekursivno perechislimykh tablichnykh stepenei i $m$-stepenei i tablichnykh stepenei”, Matem. zametki, 20:1 (1976), 19–26 | MR | Zbl

[6] Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, izd-vo «Mir», Moskva, 1972 | MR

[7] C. Jockusch, “Semirecursive sets and positive reducibility”, Trans. Amer. Math. Soc., 131:2 (1968), 420–436 | DOI | MR | Zbl

[8] A. H. Lachlan, “Two theorems on many-one degrees of recursively enumerable sets”, Algebra i logika, 11:2 (1972), 216–229 | MR | Zbl