On recursively enumerable minimal btt-degrees
Sbornik. Mathematics, Tome 32 (1977) no. 4, pp. 477-487
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that in the upper semilattice of recursively enumerable btt-degrees, every upper bound of the set of minimal elements coincides with the unit of the semilattice. In any recursively enumerable nonrecursive w-degree there exist sets having minimal m- and btt-degrees.
Bibliography: 8 titles.
@article{SM_1977_32_4_a5,
author = {S. S. Marchenkov},
title = {On recursively enumerable minimal btt-degrees},
journal = {Sbornik. Mathematics},
pages = {477--487},
publisher = {mathdoc},
volume = {32},
number = {4},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1977_32_4_a5/}
}
S. S. Marchenkov. On recursively enumerable minimal btt-degrees. Sbornik. Mathematics, Tome 32 (1977) no. 4, pp. 477-487. http://geodesic.mathdoc.fr/item/SM_1977_32_4_a5/