A~meromorphic section of a~complex analytic vector bundle over complex projective space
Sbornik. Mathematics, Tome 32 (1977) no. 4, pp. 437-447

Voir la notice de l'article provenant de la source Math-Net.Ru

The Riemann–Hilbert problem on a complex analytic manifold $V$ is as follows. Consider an analytic submanifold $L$ of codimension 1 in $V$ and a representation $\chi\colon\pi_1(V-L,x_0)\to GL(m,C)$. Does there exist a Pfaffian system of Fuchs type on $V$ whose solution space realizes the representation $\chi$? This paper is devoted to the study of conditions for the solvability of the Riemann–Hilbert problem on $CP^n$ with a given reducible algebraic variety of codimension 1 on it, whose irreducible components are nonsingular and cross each other normally. Bibliography: 15 titles.
@article{SM_1977_32_4_a3,
     author = {V. A. Golubeva},
     title = {A~meromorphic section of a~complex analytic vector bundle over complex projective space},
     journal = {Sbornik. Mathematics},
     pages = {437--447},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_32_4_a3/}
}
TY  - JOUR
AU  - V. A. Golubeva
TI  - A~meromorphic section of a~complex analytic vector bundle over complex projective space
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 437
EP  - 447
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1977_32_4_a3/
LA  - en
ID  - SM_1977_32_4_a3
ER  - 
%0 Journal Article
%A V. A. Golubeva
%T A~meromorphic section of a~complex analytic vector bundle over complex projective space
%J Sbornik. Mathematics
%D 1977
%P 437-447
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1977_32_4_a3/
%G en
%F SM_1977_32_4_a3
V. A. Golubeva. A~meromorphic section of a~complex analytic vector bundle over complex projective space. Sbornik. Mathematics, Tome 32 (1977) no. 4, pp. 437-447. http://geodesic.mathdoc.fr/item/SM_1977_32_4_a3/