A~meromorphic section of a~complex analytic vector bundle over complex projective space
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 32 (1977) no. 4, pp. 437-447
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Riemann–Hilbert problem on a complex analytic manifold $V$ is as follows. Consider an analytic submanifold $L$ of codimension 1 in $V$ and a representation $\chi\colon\pi_1(V-L,x_0)\to GL(m,C)$. Does there exist a Pfaffian system of Fuchs type on $V$ whose solution space realizes the representation $\chi$? This paper is devoted to the study of conditions for the solvability of the Riemann–Hilbert problem on $CP^n$ with a given reducible algebraic variety of codimension 1 on it, whose irreducible components are nonsingular and cross each other normally.
Bibliography: 15 titles.
			
            
            
            
          
        
      @article{SM_1977_32_4_a3,
     author = {V. A. Golubeva},
     title = {A~meromorphic section of a~complex analytic vector bundle over complex projective space},
     journal = {Sbornik. Mathematics},
     pages = {437--447},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_32_4_a3/}
}
                      
                      
                    V. A. Golubeva. A~meromorphic section of a~complex analytic vector bundle over complex projective space. Sbornik. Mathematics, Tome 32 (1977) no. 4, pp. 437-447. http://geodesic.mathdoc.fr/item/SM_1977_32_4_a3/
