@article{SM_1977_32_4_a1,
author = {V. I. Bernik},
title = {Induced extremal surfaces},
journal = {Sbornik. Mathematics},
pages = {413--421},
year = {1977},
volume = {32},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1977_32_4_a1/}
}
V. I. Bernik. Induced extremal surfaces. Sbornik. Mathematics, Tome 32 (1977) no. 4, pp. 413-421. http://geodesic.mathdoc.fr/item/SM_1977_32_4_a1/
[1] V. I. Bernik, E. I. Kovalevskaya, “Ekstremalnoe svoistvo nekotorykh poverkhnostei v $n$-mernom evklidovom prostranstve”, Matem. zametki, 15:2 (1974), 247–254 | MR | Zbl
[2] A. S. Pyartli, “Diofantovy priblizheniya na podmnogoobraziyakh evklidova prostranstva”, Funkts. analiz, 3:4 (1969), 59–62 | MR | Zbl
[3] R. Slesoraitene, “Teorema Malera - Sprindzhuka dlya polinomov tretei stepeni ot dvukh peremennykh, II”, Lit. matem. sb., 1970, no. 4, 791–814 | MR
[4] V. G. Sprindzhuk, “O gipoteze Malera”, DAN SSSR, 154:4 (1964), 783–796
[5] V. G. Sprindzhuk, “Esche o gipoteze Malera”, DAN SSSR, 155:1 (1964), 54–56
[6] V. G. Sprindzhuk, “Dokazatelstvo gipotezy Malera o mere mnozhestva $S$-chisel”, Izv. AN SSSR, seriya matem., 29 (1965), 379–436
[7] V. G. Sprindzhuk, Problema Malera v metricheskoi teorii chisel, izd-vo «Nauka i tekhnika», Minsk, 1967
[8] V. G. Sprindzhuk, “Metod trigonometricheskikh summ v metricheskoi teorii diofantovykh priblizhenii zavisimykh velichin”, Sb. statei, posvyaschennyi 80-letiyu I. M. Vinogradova, Trudy matem. in-ta im. V. A. Steklova, CXXVIII, 1972, 212–228
[9] E. I. Kovalevskaja, “Metric theorems on the approximation of zero a linear combination of polynomials with integral coefficients”, Acta Arithmetica, 25:3 (1973), 93–104 | MR
[10] K. Mahler, “Über das Mass der Menge aller $S$-Zahlen”, Math. Ann., 106 (1932), 131–139 | DOI | MR | Zbl
[11] W. Schmidt, “Metrische Sätze über simultane Approximation abhängiger Grossen”, Monatsh. für Math., 63:2 (1964), 154–166 | DOI | MR