Induced extremal surfaces
Sbornik. Mathematics, Tome 32 (1977) no. 4, pp. 413-421
Voir la notice de l'article provenant de la source Math-Net.Ru
Under general assumptions on the functions $f_1(x),\dots,f_n(x)$ and $\varphi_1(y_1,\dots,y_k),\dots,\varphi_m(y_1,\dots,y_k)$ it is proved that the inequality
$$
\|a_1f_1+\dots+a_nf_n+a_{n+1}\varphi_1+\dots+a_{n+m}\varphi_m\|^{-(m+n)-\varepsilon},
$$
where $\|\alpha\|$ is the distance from $\alpha$ to the nearest integer and $H=\max|a_i|$, $i=1,\dots,n+m$, has only a finite number of solutions in integers $a_1,\dots,a_{n+m}$ for almost all $(x,y_1,\dots,y_k)\in R^{k+1}$. This establishes the extremality of the surface $(f_1,\dots,f_n,\varphi_1,\dots,\varphi_m)$.
Bibliography: 11 titles.
@article{SM_1977_32_4_a1,
author = {V. I. Bernik},
title = {Induced extremal surfaces},
journal = {Sbornik. Mathematics},
pages = {413--421},
publisher = {mathdoc},
volume = {32},
number = {4},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1977_32_4_a1/}
}
V. I. Bernik. Induced extremal surfaces. Sbornik. Mathematics, Tome 32 (1977) no. 4, pp. 413-421. http://geodesic.mathdoc.fr/item/SM_1977_32_4_a1/