Induced extremal surfaces
Sbornik. Mathematics, Tome 32 (1977) no. 4, pp. 413-421 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Under general assumptions on the functions $f_1(x),\dots,f_n(x)$ and $\varphi_1(y_1,\dots,y_k),\dots,\varphi_m(y_1,\dots,y_k)$ it is proved that the inequality $$ \|a_1f_1+\dots+a_nf_n+a_{n+1}\varphi_1+\dots+a_{n+m}\varphi_m\|<H^{-(m+n)-\varepsilon}, $$ where $\|\alpha\|$ is the distance from $\alpha$ to the nearest integer and $H=\max|a_i|$, $i=1,\dots,n+m$, has only a finite number of solutions in integers $a_1,\dots,a_{n+m}$ for almost all $(x,y_1,\dots,y_k)\in R^{k+1}$. This establishes the extremality of the surface $(f_1,\dots,f_n,\varphi_1,\dots,\varphi_m)$. Bibliography: 11 titles.
@article{SM_1977_32_4_a1,
     author = {V. I. Bernik},
     title = {Induced extremal surfaces},
     journal = {Sbornik. Mathematics},
     pages = {413--421},
     year = {1977},
     volume = {32},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_32_4_a1/}
}
TY  - JOUR
AU  - V. I. Bernik
TI  - Induced extremal surfaces
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 413
EP  - 421
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1977_32_4_a1/
LA  - en
ID  - SM_1977_32_4_a1
ER  - 
%0 Journal Article
%A V. I. Bernik
%T Induced extremal surfaces
%J Sbornik. Mathematics
%D 1977
%P 413-421
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1977_32_4_a1/
%G en
%F SM_1977_32_4_a1
V. I. Bernik. Induced extremal surfaces. Sbornik. Mathematics, Tome 32 (1977) no. 4, pp. 413-421. http://geodesic.mathdoc.fr/item/SM_1977_32_4_a1/

[1] V. I. Bernik, E. I. Kovalevskaya, “Ekstremalnoe svoistvo nekotorykh poverkhnostei v $n$-mernom evklidovom prostranstve”, Matem. zametki, 15:2 (1974), 247–254 | MR | Zbl

[2] A. S. Pyartli, “Diofantovy priblizheniya na podmnogoobraziyakh evklidova prostranstva”, Funkts. analiz, 3:4 (1969), 59–62 | MR | Zbl

[3] R. Slesoraitene, “Teorema Malera - Sprindzhuka dlya polinomov tretei stepeni ot dvukh peremennykh, II”, Lit. matem. sb., 1970, no. 4, 791–814 | MR

[4] V. G. Sprindzhuk, “O gipoteze Malera”, DAN SSSR, 154:4 (1964), 783–796

[5] V. G. Sprindzhuk, “Esche o gipoteze Malera”, DAN SSSR, 155:1 (1964), 54–56

[6] V. G. Sprindzhuk, “Dokazatelstvo gipotezy Malera o mere mnozhestva $S$-chisel”, Izv. AN SSSR, seriya matem., 29 (1965), 379–436

[7] V. G. Sprindzhuk, Problema Malera v metricheskoi teorii chisel, izd-vo «Nauka i tekhnika», Minsk, 1967

[8] V. G. Sprindzhuk, “Metod trigonometricheskikh summ v metricheskoi teorii diofantovykh priblizhenii zavisimykh velichin”, Sb. statei, posvyaschennyi 80-letiyu I. M. Vinogradova, Trudy matem. in-ta im. V. A. Steklova, CXXVIII, 1972, 212–228

[9] E. I. Kovalevskaja, “Metric theorems on the approximation of zero a linear combination of polynomials with integral coefficients”, Acta Arithmetica, 25:3 (1973), 93–104 | MR

[10] K. Mahler, “Über das Mass der Menge aller $S$-Zahlen”, Math. Ann., 106 (1932), 131–139 | DOI | MR | Zbl

[11] W. Schmidt, “Metrische Sätze über simultane Approximation abhängiger Grossen”, Monatsh. für Math., 63:2 (1964), 154–166 | DOI | MR