Induced extremal surfaces
Sbornik. Mathematics, Tome 32 (1977) no. 4, pp. 413-421

Voir la notice de l'article provenant de la source Math-Net.Ru

Under general assumptions on the functions $f_1(x),\dots,f_n(x)$ and $\varphi_1(y_1,\dots,y_k),\dots,\varphi_m(y_1,\dots,y_k)$ it is proved that the inequality $$ \|a_1f_1+\dots+a_nf_n+a_{n+1}\varphi_1+\dots+a_{n+m}\varphi_m\|^{-(m+n)-\varepsilon}, $$ where $\|\alpha\|$ is the distance from $\alpha$ to the nearest integer and $H=\max|a_i|$, $i=1,\dots,n+m$, has only a finite number of solutions in integers $a_1,\dots,a_{n+m}$ for almost all $(x,y_1,\dots,y_k)\in R^{k+1}$. This establishes the extremality of the surface $(f_1,\dots,f_n,\varphi_1,\dots,\varphi_m)$. Bibliography: 11 titles.
@article{SM_1977_32_4_a1,
     author = {V. I. Bernik},
     title = {Induced extremal surfaces},
     journal = {Sbornik. Mathematics},
     pages = {413--421},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_32_4_a1/}
}
TY  - JOUR
AU  - V. I. Bernik
TI  - Induced extremal surfaces
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 413
EP  - 421
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1977_32_4_a1/
LA  - en
ID  - SM_1977_32_4_a1
ER  - 
%0 Journal Article
%A V. I. Bernik
%T Induced extremal surfaces
%J Sbornik. Mathematics
%D 1977
%P 413-421
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1977_32_4_a1/
%G en
%F SM_1977_32_4_a1
V. I. Bernik. Induced extremal surfaces. Sbornik. Mathematics, Tome 32 (1977) no. 4, pp. 413-421. http://geodesic.mathdoc.fr/item/SM_1977_32_4_a1/