Stability of a~minimization problem under perturbation of the set of admissible elements
Sbornik. Mathematics, Tome 32 (1977) no. 4, pp. 401-412

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $F$ be a continuous real functional on the space $X$. Continuity of the operator $\mathcal F$ from $2^X$ into itself is considered, where $\mathcal F(M)=\bigl\{x\in M:F(x)=\inf F(M)\bigr\}$ for each $M\in 2^X$. In particular, in the case of a normed space $X$ the following is proved. Write $$ AB=\sup_{x\in A}\inf_{y\in B}\|x-y\|,\qquad h(A,B)=\max\{AB,BA\},\qquad(A,B\subset X), $$ and let $\mathcal M$ be the totality of all closed convex sets in $X$. A set $M\subset X$ is called approximately compact if every minimizing sequence in $M$ contains a subsequence converging to an element of $M$. Suppose $X$ is reflexive, $F$ is convex and the set $\bigl\{x\in X:F(x)\leqslant r\bigr\}$ is bounded for $r>\inf F(X)$ and contains interior points. Then the following assertions are equivalent: a) $M_\alpha,M\in\mathcal M$, $h(M_\alpha,M)\to0\Rightarrow\mathcal F(M_\alpha)\mathcal F(M)\to0$, b) every set $M\in\mathcal M$ is approximately compact. Bibliography: 15 titles.
@article{SM_1977_32_4_a0,
     author = {V. I. Berdyshev},
     title = {Stability of a~minimization problem under perturbation of the set of admissible elements},
     journal = {Sbornik. Mathematics},
     pages = {401--412},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_32_4_a0/}
}
TY  - JOUR
AU  - V. I. Berdyshev
TI  - Stability of a~minimization problem under perturbation of the set of admissible elements
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 401
EP  - 412
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1977_32_4_a0/
LA  - en
ID  - SM_1977_32_4_a0
ER  - 
%0 Journal Article
%A V. I. Berdyshev
%T Stability of a~minimization problem under perturbation of the set of admissible elements
%J Sbornik. Mathematics
%D 1977
%P 401-412
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1977_32_4_a0/
%G en
%F SM_1977_32_4_a0
V. I. Berdyshev. Stability of a~minimization problem under perturbation of the set of admissible elements. Sbornik. Mathematics, Tome 32 (1977) no. 4, pp. 401-412. http://geodesic.mathdoc.fr/item/SM_1977_32_4_a0/