Stability of a minimization problem under perturbation of the set of admissible elements
Sbornik. Mathematics, Tome 32 (1977) no. 4, pp. 401-412 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $F$ be a continuous real functional on the space $X$. Continuity of the operator $\mathcal F$ from $2^X$ into itself is considered, where $\mathcal F(M)=\bigl\{x\in M:F(x)=\inf F(M)\bigr\}$ for each $M\in 2^X$. In particular, in the case of a normed space $X$ the following is proved. Write $$ AB=\sup_{x\in A}\inf_{y\in B}\|x-y\|,\qquad h(A,B)=\max\{AB,BA\},\qquad(A,B\subset X), $$ and let $\mathcal M$ be the totality of all closed convex sets in $X$. A set $M\subset X$ is called approximately compact if every minimizing sequence in $M$ contains a subsequence converging to an element of $M$. Suppose $X$ is reflexive, $F$ is convex and the set $\bigl\{x\in X:F(x)\leqslant r\bigr\}$ is bounded for $r>\inf F(X)$ and contains interior points. Then the following assertions are equivalent: a) $M_\alpha,M\in\mathcal M$, $h(M_\alpha,M)\to0\Rightarrow\mathcal F(M_\alpha)\mathcal F(M)\to0$, b) every set $M\in\mathcal M$ is approximately compact. Bibliography: 15 titles.
@article{SM_1977_32_4_a0,
     author = {V. I. Berdyshev},
     title = {Stability of a~minimization problem under perturbation of the set of admissible elements},
     journal = {Sbornik. Mathematics},
     pages = {401--412},
     year = {1977},
     volume = {32},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_32_4_a0/}
}
TY  - JOUR
AU  - V. I. Berdyshev
TI  - Stability of a minimization problem under perturbation of the set of admissible elements
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 401
EP  - 412
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1977_32_4_a0/
LA  - en
ID  - SM_1977_32_4_a0
ER  - 
%0 Journal Article
%A V. I. Berdyshev
%T Stability of a minimization problem under perturbation of the set of admissible elements
%J Sbornik. Mathematics
%D 1977
%P 401-412
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1977_32_4_a0/
%G en
%F SM_1977_32_4_a0
V. I. Berdyshev. Stability of a minimization problem under perturbation of the set of admissible elements. Sbornik. Mathematics, Tome 32 (1977) no. 4, pp. 401-412. http://geodesic.mathdoc.fr/item/SM_1977_32_4_a0/

[1] V. I. Berdyshev, “Nepreryvnaya zavisimost elementa, realizuyuschego minimum vypuklogo funktsionala ot mnozhestva dopustimykh elementov”, Matem. zametki, 19:4 (1976), 501–512 | Zbl

[2] N. Burbaki, Obschaya topologiya, izd-vo «Nauka», Moskva, 1958 | MR

[3] L. P. Vlasov, “Ponyatie approksimativnoi kompaktnosti i ego varianty”, Matem. zametki, 16:2 (1974), 337–348 | MR | Zbl

[4] A. L. Garkavi, “Teoriya nailuchshego priblizheniya v lineinykh normirovannykh prostranstvakh”, Itogi nauki. Matem. analiz 1967, VINITI, M., 1969, 75–132 | MR | Zbl

[5] E. G. Golshtein, Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, izd-vo «Nauka», Moskva, 1971 | MR

[6] N. V. Efimov, S. B. Stechkin, “Approksimativnaya kompaktnost i chebyshevskie mnozhestva”, DAN SSSR, 140:3 (1961), 522–524 | MR | Zbl

[7] K. Kuratovskii, Topologiya, t. 1, izd-vo «Mir», Moskva, 1966 | MR

[8] O. A. Liskovets, “Ob ekstremalnykh zadachakh i metode regulyarizatsii”, Vests. AN BSSR, seriya fiz.-matem. nauk, 1976, no. 1, 25–32 | Zbl

[9] P.-Zh. Loran, Approksimatsiya i optimizatsiya, izd-vo «Mir», Moskva, 1975 | Zbl

[10] E. V. Oshman, “O nepreryvnosti metricheskoi proektsii v prostranstve Banakha”, Matem. sb., 80 (122) (1969), 181–194 | MR | Zbl

[11] A. N. Tikhonov, “Ob ustoichivosti zadachi optimizatsii funktsionalov”, ZhMV i MF, 6:4 (1966), 631–634 | Zbl

[12] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, izd-vo «Nauka», Moskva, 1974 | MR

[13] G. B. Dantzig, J. Folkman, N. Shapiro, “On the continuity of the minimum set of continuous function”, J. Math. Anal. Appl., 17 (1967), 519–548 | DOI | MR | Zbl

[14] J. Grinberg, W. Pierskalla, “Extensions of the Evans - Gould stability theorems for mathematical programs”, Operat. Research, 20:1 (1972), 143–153 | DOI | MR

[15] I. Singer, “Some remarks on approximative compactness”, Rev. Roumaine Math. Pures Appl., 9:2 (1964), 167–177 | MR | Zbl