Boundary value problems in the theory of infinitesimal bendings of surfaces of positive curvature with piecewise smooth boundary
Sbornik. Mathematics, Tome 32 (1977) no. 3, pp. 385-400
Cet article a éte moissonné depuis la source Math-Net.Ru
Problems in the theory of infinitesimal bendings of simply-connected surfaces of positive curvature with piecewise smooth boundary under certain boundary conditions are studied. A qualitative investigation into the solvability of the corresponding boundary value problem is given for generalized analytic functions with discontinuous coefficients in the boundary condition. Figures: 1. Bibliography: 6 titles.
@article{SM_1977_32_3_a7,
author = {E. V. Tyurikov},
title = {Boundary value problems in the theory of infinitesimal bendings of surfaces of positive curvature with piecewise smooth boundary},
journal = {Sbornik. Mathematics},
pages = {385--400},
year = {1977},
volume = {32},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1977_32_3_a7/}
}
TY - JOUR AU - E. V. Tyurikov TI - Boundary value problems in the theory of infinitesimal bendings of surfaces of positive curvature with piecewise smooth boundary JO - Sbornik. Mathematics PY - 1977 SP - 385 EP - 400 VL - 32 IS - 3 UR - http://geodesic.mathdoc.fr/item/SM_1977_32_3_a7/ LA - en ID - SM_1977_32_3_a7 ER -
E. V. Tyurikov. Boundary value problems in the theory of infinitesimal bendings of surfaces of positive curvature with piecewise smooth boundary. Sbornik. Mathematics, Tome 32 (1977) no. 3, pp. 385-400. http://geodesic.mathdoc.fr/item/SM_1977_32_3_a7/
[1] I. N. Vekua, Obobschennye analiticheskie funktsii, Fizmatgiz, Moskva, 1959 | MR
[2] V. T. Fomenko, “Ob izgibanii i odnoznachnoi opredelennosti poverkhnostei polozhitelnoi krivizny s kraem”, Matem. sb., 66 (108) (1965), 127–141 | MR | Zbl
[3] N. I. Muskhelishvili, Singulyarnye integralnye uravneniya, Fizmatgiz, Moskva, 1968 | MR
[4] L. G. Mikhailov, “Kraevaya zadacha tipa zadachi Rimana dlya sistem differentsialnykh uravnenii pervogo poryadka ellipticheskogo tipa”, Uchenye zapiski Tadzh. un-ta, X (1957), 32–79
[5] F. D. Gakhov, Kraevye zadachi, Fizmatgiz, Moskva, 1962
[6] N. V. Efimov, “Kachestvennye voprosy teorii deformatsii poverkhnostei”, Uspekhi matem. nauk, III:2 (24) (1948), 47–158 | MR