Limit theorems for the number of trees of a~given size in a~random forest
Sbornik. Mathematics, Tome 32 (1977) no. 3, pp. 335-345

Voir la notice de l'article provenant de la source Math-Net.Ru

The author considers the set of all forests consisting of $N$ rooted trees and containing $n$ nonroot vertices; the root vertices are numbered from 1 to $N$, and the nonroot from 1 to $n$. A uniform probability distribution is introduced on this set. Let $\mu_r(n,N)$ denote a random variable equal to the number of trees of a random forest containing exactly $r$ nonroot vertices. Results are obtained yielding a complete description of the limit behavior of the variables $\mu_r(n,N)$ for all values of $r$ for various ways of letting $n$ and $N$ approach infinity. It is shown that these results can be used for studying random mappings. Bibliography: 9 titles.
@article{SM_1977_32_3_a4,
     author = {Yu. L. Pavlov},
     title = {Limit theorems for the number of trees of a~given size in a~random forest},
     journal = {Sbornik. Mathematics},
     pages = {335--345},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_32_3_a4/}
}
TY  - JOUR
AU  - Yu. L. Pavlov
TI  - Limit theorems for the number of trees of a~given size in a~random forest
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 335
EP  - 345
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1977_32_3_a4/
LA  - en
ID  - SM_1977_32_3_a4
ER  - 
%0 Journal Article
%A Yu. L. Pavlov
%T Limit theorems for the number of trees of a~given size in a~random forest
%J Sbornik. Mathematics
%D 1977
%P 335-345
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1977_32_3_a4/
%G en
%F SM_1977_32_3_a4
Yu. L. Pavlov. Limit theorems for the number of trees of a~given size in a~random forest. Sbornik. Mathematics, Tome 32 (1977) no. 3, pp. 335-345. http://geodesic.mathdoc.fr/item/SM_1977_32_3_a4/