The divisible hull and orthocompletion of lattice ordered modules
Sbornik. Mathematics, Tome 32 (1977) no. 3, pp. 293-303 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work is devoted to investigation of order properties of the regular completion $R(X)$, the orthocompletion $M(X)$, and the divisible (=injective) hull $D_{\mathfrak F_R}(X)$ with respect to dense ideals of an $f$-module $X$ torsion free with respect to the filter $\mathfrak F_R$ of dense ideals over the commutative $f$-ring $R$ without nilpotent elements. The possibility of extending the order from $X$ to $R(X)$, $M(X)$ and $D(X)$ is established. The equivalence is demonstrated of the notions of orthocompleteness and lattice orthocompleteness, divisibility and order divisibility, and injectivitity and lattice injectivity. Also, the equivalence is proved of order divisibility, lattice injectivity and lattice completeness and regularity. Appropriate characterizations of $M(X)$ and $D(X)$ are given. Bibliography: 14 titles.
@article{SM_1977_32_3_a1,
     author = {V. K. Zakharov},
     title = {The divisible hull and orthocompletion of~lattice ordered modules},
     journal = {Sbornik. Mathematics},
     pages = {293--303},
     year = {1977},
     volume = {32},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_32_3_a1/}
}
TY  - JOUR
AU  - V. K. Zakharov
TI  - The divisible hull and orthocompletion of lattice ordered modules
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 293
EP  - 303
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1977_32_3_a1/
LA  - en
ID  - SM_1977_32_3_a1
ER  - 
%0 Journal Article
%A V. K. Zakharov
%T The divisible hull and orthocompletion of lattice ordered modules
%J Sbornik. Mathematics
%D 1977
%P 293-303
%V 32
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1977_32_3_a1/
%G en
%F SM_1977_32_3_a1
V. K. Zakharov. The divisible hull and orthocompletion of lattice ordered modules. Sbornik. Mathematics, Tome 32 (1977) no. 3, pp. 293-303. http://geodesic.mathdoc.fr/item/SM_1977_32_3_a1/

[1] A. P. Mishina, L. A. Skornyakov, Abelevy gruppy i moduli, izd-vo «Nauka», Moskva, 1969 | MR

[2] B. Stenström, Rings and modules of quotients, Lecture Notes in Math., 237, 1971 | MR | Zbl

[3] I. Lambek, Koltsa i moduli, izd-vo «Mir», Moskva, 1971 | MR

[4] V. K. Zakharov, “Ortopopolnenie modulei, kolets i bulevykh algebr”, Uporyadochennye mnozhestva i reshetki, no. 4, Saratovskii un-t, 1976, 54–65

[5] V. K. Zakharov, “Regulyarnoe popolnenie modulei”, Matem. zametki, 19:6 (1976), 843–851 | MR | Zbl

[6] E. Anderson, “Lattice-ordered rings of quotients”, Canad. J. Math., 17:3 (1965), 434–449 | MR

[7] V. K. Zakharov, “Delimaya obolochka $l$-modulei”, Uspekhi matem. nauk, XXXI:1 (187) (1976), 249–250 | MR

[8] S. J. Bernan, “Orthocompletion of lattice groups”, Proc. London Math. Soc., 16:1 (1966), 107–130 | DOI | MR

[9] L. Fuks, Chastichno uporyadochennye algebraicheskie sistemy, izd-vo «Mir», Moskva, 1965 | MR

[10] S. Steinberg, “Finitely-valued $f$-modules”, Pacific J. Math., 40:3 (1972), 723–737 | MR | Zbl

[11] I. Bukur, A. Delyanu, Vvedenie v teoriyu kategorii i funktorov, izd-vo «Mir», Moskva, 1972 | MR

[12] B. Z. Vulikh, Vvedenie v teoriyu poluuporyadochennykh prostranstv, Fizmatgiz, Moskva, 1961

[13] P. F. Conrad, “The hulls of semiprime rings”, Bull. Austral. Math. Soc., 12:2 (1975), 311–314 | DOI | MR | Zbl

[14] P. F. Conrad, “The hulls of representable $l$-groups and $f$-rings”, J. Austral. Math. Soc., 16:4 (1973), 385–415 | DOI | MR | Zbl