Local finiteness of periodic subloops of an alternative PI-ring
Sbornik. Mathematics, Tome 32 (1977) no. 2, pp. 265-271

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a periodic loop imbeddable in an alternative PI-ring is locally finite, and also that a periodic loop of bounded index which is imbeddable in a Cayley-Dickson algebra over a field of characteristic zero is finite. Bibliography: 11 titles.
@article{SM_1977_32_2_a6,
     author = {Yu. A. Medvedev},
     title = {Local finiteness of periodic subloops of an alternative {PI-ring}},
     journal = {Sbornik. Mathematics},
     pages = {265--271},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_32_2_a6/}
}
TY  - JOUR
AU  - Yu. A. Medvedev
TI  - Local finiteness of periodic subloops of an alternative PI-ring
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 265
EP  - 271
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1977_32_2_a6/
LA  - en
ID  - SM_1977_32_2_a6
ER  - 
%0 Journal Article
%A Yu. A. Medvedev
%T Local finiteness of periodic subloops of an alternative PI-ring
%J Sbornik. Mathematics
%D 1977
%P 265-271
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1977_32_2_a6/
%G en
%F SM_1977_32_2_a6
Yu. A. Medvedev. Local finiteness of periodic subloops of an alternative PI-ring. Sbornik. Mathematics, Tome 32 (1977) no. 2, pp. 265-271. http://geodesic.mathdoc.fr/item/SM_1977_32_2_a6/