Local finiteness of periodic subloops of an alternative PI-ring
Sbornik. Mathematics, Tome 32 (1977) no. 2, pp. 265-271
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that a periodic loop imbeddable in an alternative PI-ring is locally finite, and also that a periodic loop of bounded index which is imbeddable in a Cayley-Dickson algebra over a field of characteristic zero is finite.
Bibliography: 11 titles.
@article{SM_1977_32_2_a6, author = {Yu. A. Medvedev}, title = {Local finiteness of periodic subloops of an alternative {PI-ring}}, journal = {Sbornik. Mathematics}, pages = {265--271}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {1977}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SM_1977_32_2_a6/} }
Yu. A. Medvedev. Local finiteness of periodic subloops of an alternative PI-ring. Sbornik. Mathematics, Tome 32 (1977) no. 2, pp. 265-271. http://geodesic.mathdoc.fr/item/SM_1977_32_2_a6/