The exact order of the best approximation to convex functions by~rational functions
Sbornik. Mathematics, Tome 32 (1977) no. 2, pp. 245-251
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that the least uniform rational deviations $R_n(f)$ from the function $f(x)$, continuous and convex on the interval $[a,b]$, satisfy the condition $R_n(f)=o(1/n)$ as $n\to\infty$, and that $R_n(f)=O(1/n)$ uniformly for the continuous convex functions $f$ whose absolute values are bounded by unity. These estimates are precise with respect to the rate of decrease of the right-hand sides.
Bibliography: 16 titles.
@article{SM_1977_32_2_a4,
author = {V. A. Popov and P. P. Petrushev},
title = {The exact order of the best approximation to convex functions by~rational functions},
journal = {Sbornik. Mathematics},
pages = {245--251},
publisher = {mathdoc},
volume = {32},
number = {2},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1977_32_2_a4/}
}
TY - JOUR AU - V. A. Popov AU - P. P. Petrushev TI - The exact order of the best approximation to convex functions by~rational functions JO - Sbornik. Mathematics PY - 1977 SP - 245 EP - 251 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1977_32_2_a4/ LA - en ID - SM_1977_32_2_a4 ER -
V. A. Popov; P. P. Petrushev. The exact order of the best approximation to convex functions by~rational functions. Sbornik. Mathematics, Tome 32 (1977) no. 2, pp. 245-251. http://geodesic.mathdoc.fr/item/SM_1977_32_2_a4/