On the asymptotics of the ratio of orthogonal polynomials
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 32 (1977) no. 2, pp. 199-213
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Conditions are obtained for the existence of “exterior” asymptotics for orthogonal polynomials. In particular, it is shown that if $\rho'>0$ almost everywhere on the interval $[-1,1]$ ($\rho(x)$ is a nondecreasing function on $[-1,1]$), then for the corresponding orthonormal polynomials the relation $\frac{P_{n+1}(z)}{P_n(z)}\rightrightarrows z+\sqrt{z^2-1}$ holds on compact subsets of $\mathbf C\setminus[-1,1]$. The branch of the square root is chosen so that $|z+\sqrt{z^2-1}\,|>1$ in the region described.
Bibliography: 6 titles.
			
            
            
            
          
        
      @article{SM_1977_32_2_a1,
     author = {E. A. Rakhmanov},
     title = {On the asymptotics of the ratio of orthogonal polynomials},
     journal = {Sbornik. Mathematics},
     pages = {199--213},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_32_2_a1/}
}
                      
                      
                    E. A. Rakhmanov. On the asymptotics of the ratio of orthogonal polynomials. Sbornik. Mathematics, Tome 32 (1977) no. 2, pp. 199-213. http://geodesic.mathdoc.fr/item/SM_1977_32_2_a1/
