On the dependence of the boundary properties of an analytic function on the rapidity of its approximation by rational functions
Sbornik. Mathematics, Tome 32 (1977) no. 1, pp. 116-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the behavior of the means of the modulus of the derivative of an analytic function $f(z)$ which is continuous up to the boundary of its domain $G$, as it depends on the behavior of $R_n(f,\overline G)$, the least deviations of $f$ on $\overline G$ from the rational functions of degree $\leqslant n$. For example, if $p\geqslant1$, $p-1<\alpha\leqslant p$ and $\sum n^{-\alpha+p-1}R_n^p(f,\overline D)<\nobreak\infty$, then $(1-|z|)^{\alpha-1}|f'(z)|^p$ is summable over the area of the disk $D:|z|<1$ (for $p-1<\alpha this is best possible). Bibliography: 6 titles.
@article{SM_1977_32_1_a7,
     author = {E. P. Dolzhenko},
     title = {On the dependence of the boundary properties of an analytic function on the rapidity of its approximation by rational functions},
     journal = {Sbornik. Mathematics},
     pages = {116--126},
     year = {1977},
     volume = {32},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_32_1_a7/}
}
TY  - JOUR
AU  - E. P. Dolzhenko
TI  - On the dependence of the boundary properties of an analytic function on the rapidity of its approximation by rational functions
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 116
EP  - 126
VL  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1977_32_1_a7/
LA  - en
ID  - SM_1977_32_1_a7
ER  - 
%0 Journal Article
%A E. P. Dolzhenko
%T On the dependence of the boundary properties of an analytic function on the rapidity of its approximation by rational functions
%J Sbornik. Mathematics
%D 1977
%P 116-126
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1977_32_1_a7/
%G en
%F SM_1977_32_1_a7
E. P. Dolzhenko. On the dependence of the boundary properties of an analytic function on the rapidity of its approximation by rational functions. Sbornik. Mathematics, Tome 32 (1977) no. 1, pp. 116-126. http://geodesic.mathdoc.fr/item/SM_1977_32_1_a7/

[1] E. P. Dolzhenko, “Ratsionalnye approksimatsii i granichnye svoistva analiticheskikh funktsii”, Matem. sb., 69 (111) (1966), 497–524 | Zbl

[2] E. A. Sevastyanov, “Kusochno monotonnaya approksimatsiya i $\Phi$-variatsii”, Analysis Math., 1:2 (1975), 141–164 | DOI | MR

[3] E. A. Sevastyanov, “Ravnomernye priblizheniya kusochno monotonnymi funktsiyami i nekotorye ikh prilozheniya k $\Phi$-variatsiyam i ryadam Fure”, DAN SSSR, 217:1 (1974), 27–30

[4] E. P. Dolzhenko, “Ravnomernye approksimatsii ratsionalnymi funktsiyami (algebraicheskimi i trigonometricheskimi) i globalnye funktsionalnye svoistva”, DAN SSSR, 166:3 (1966), 526–529 | Zbl

[5] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, izd-vo «Nauka», Moskva, 1975 | MR | Zbl

[6] M. I. Gvaradze, “O prostranstvakh $B(p, q, \lambda)$ analiticheskikh funktsii”, Soobsch. AN Gruz. SSR, 77:2 (1975), 273–276 | MR | Zbl